

https://climate-adapt.eea.europa.eu/metadata/case-studies/urban-storm-water-management-in-augustenborg-malmo

Putting the blue in urban bluegreen infrastructure: How can urban waters and landscapes support ecosystem services?

Ishi Buffam (ishi.buffam@slu.se)

Landscape Architecture, Planning and Management

SLU Alnarp

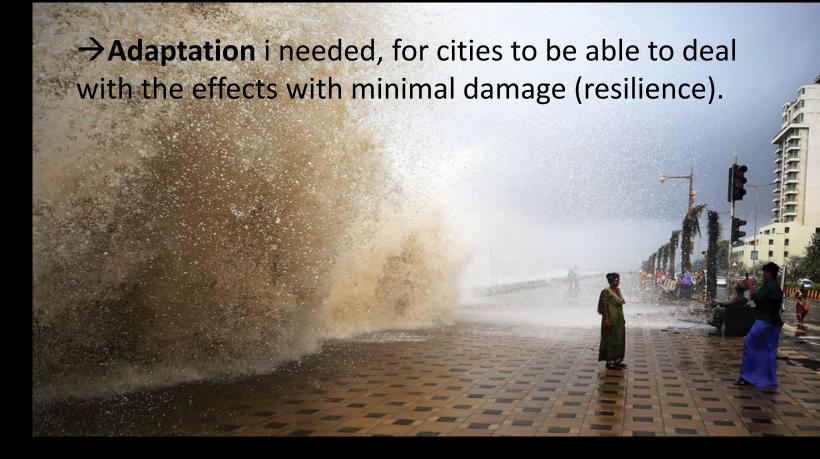
February 2021 – SLU Vatten Seminar

https://climate-adapt.eea.europa.eu/metadata/case-studies/urban-storm-water-management-in-augustenborg-malmo

We need more research on

Putting the blue in urban bluegreen infrastructure: How can urban waters and landscapes support ecosystem services?

Ishi Buffam (ishi.buffam@slu.se)


Landscape Architecture, Planning and Management

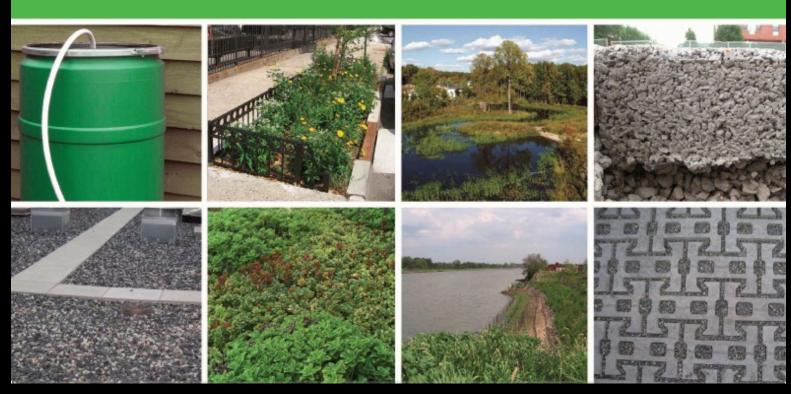
SLU Alnarp

Climate change is an existential threat to many cities, and this threat is intertwined with the water cycle

Major CC threats

- 1. Sea Level Rise
- 2. Flooding
- 3. Drought, loss of crops
- 4. Heat waves
- 5. Storm water runoff causing pollution

Grey infrastructure – stormwater capture tunnel, Milwaukee, WI


Urban (blue)-green infrastructure provides multifunctional benefits

NYC GREEN INFRASTRUCTURE PLAN

A SUSTAINABLE STRATEGY FOR CLEAN WATERWAYS

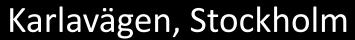
Michael R. Bloomberg, Mayor Cas Holloway, Commissioner

- Multiple ecosystem services from the same structure in the same space
- Stormwater runoff mitigation
- Flood reduction
- Improved water quality nutrient and metals removal
- Reduced Urban Heat Island Effect
- Reduced greenhouse gas emissions
- Wildlife Habitat Creation
- Noise and Air Pollution Reduction
- Psychological Effects
- Creation of social/community/recreation spaces

SLU's LAPF department is attacking the challenge of urban water resilience from different angles, in teaching and research

- Climate change landscape in transition (Kristina Blennow)
- Challenges of the city (Ann-Mari Fransson)
- Green-blue infrastructure (Scott Wahl)
- Green roofs basic concepts and application (Tobias Emilsson)
- Dynamic Vegetation Design (Björn Wiström)
- <u>Design research</u> on urban water landscapes (Lisa Diedrich)

Alexandre Chemetoff, Ile de Nantes


Photo courtesy Lisa Diedrich

• Etc.

Example #1: Street trees in a changing climate (Tobias Emilsson & Colleagues, Formas project)

Example #2: Development of Blue-green-grey systems (Ann-Mari Fransson & colleagues)

- Collaboration between EDGE and SLU
- Raingardens, open reinforcement layer and subsurface irrigation modules
- https://bluegreengrey.edges.se/

Example #3: Research on hydrological and biogeochemical function in Green Roofs – novel engineered ecosystems, simple catchments

COUPLED BIOGEOCHEMICAL CYCLES

Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions

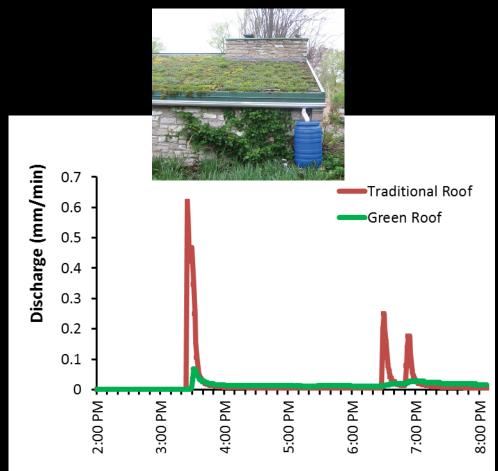
Diane E Pataki^{1,2*}, Margaret M Carreiro³, Jennifer Cherrier⁴, Nancy E Grulke⁵, Viniece Jennings⁶, Stephanie Pincetl⁷, Richard V Pouyat⁸, Thomas H Whitlow⁹, and Wayne C Zipperer⁶

Table 1. Commonly discussed urban ecosystem services/ disservices associated with biogeochemical cycles, with their potential magnitudes (relative to the scope of the associated environmental problem) and uncertainty levels

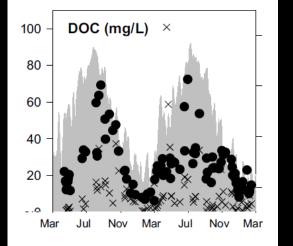
Ecosystem service	Potential magnitude	Current level of uncertainty				
C sequestration	Low	Low				
Net GHG emissions	Moderate	High				
Local cooling	High	Moderate				
Stormwater mitigation	High	Moderate				
Water-quality mitigation	High	High				
Air-quality mitigation	Low	High				
General human health	Moderate	Moderate				
Ecosystem disservice	Potential magnitude	Current level of uncertainty				
Water use	High	Moderate				
Net GHG emissions	Moderate	High				
Source of allergens	High	Low				
VOC emissions	Moderate	Moderate				

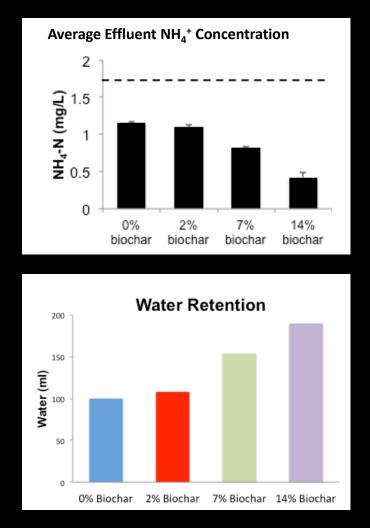
Notes: GHG emissions are listed as both a service and disservice because the impacts of plants or soils may be either positive (net cooling) or negative (net warming) in hot climates.VOC = volatile organic compounds, which are precursors to the formation of ozone pollution.

\bigcirc

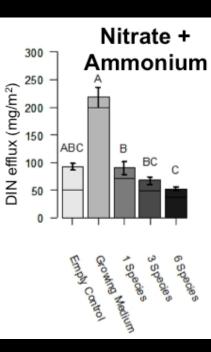

Green roofs delay and reduce stormwater runoff

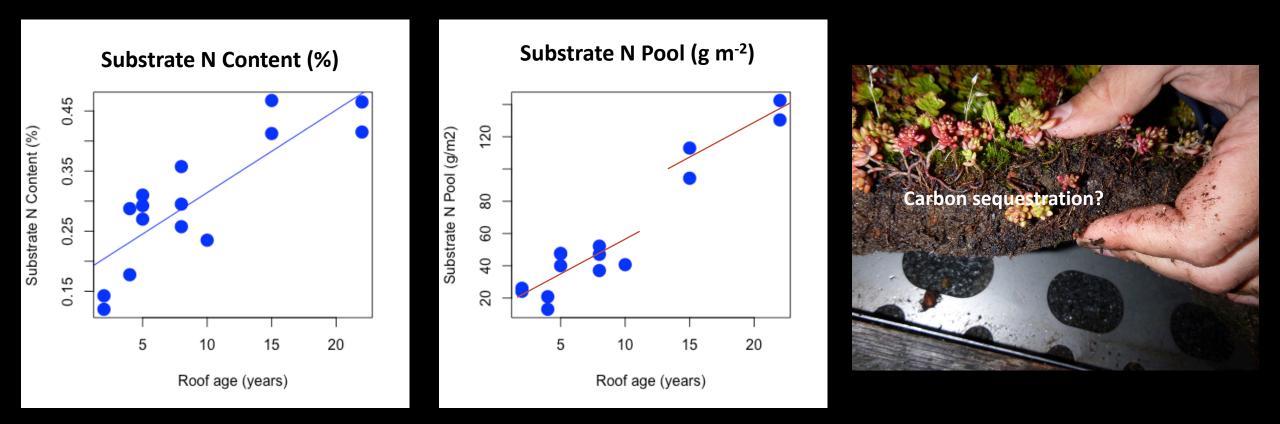
Plot-scale experiments


Civic Garden Center Roof, Cincinnati, USA Example rain event (12mm)


Clear runoff reduction, 50-70% on annual basis: Our group and many others.

Green roof design and climate play a strong role in the impact on runoff water quality


Seasonal variation in runoff nutrients (Buffam et al. 2016, Buffam and Mitchell 2015)


Biochar in green roof substrate increases water retention and **reduces** NH_4^+ and PO_4^{3-} **leaching** loss (Goldschmidt et al. 2018)

Biodiverse plots MUCH better at holding N (Johnson et al., 2016)

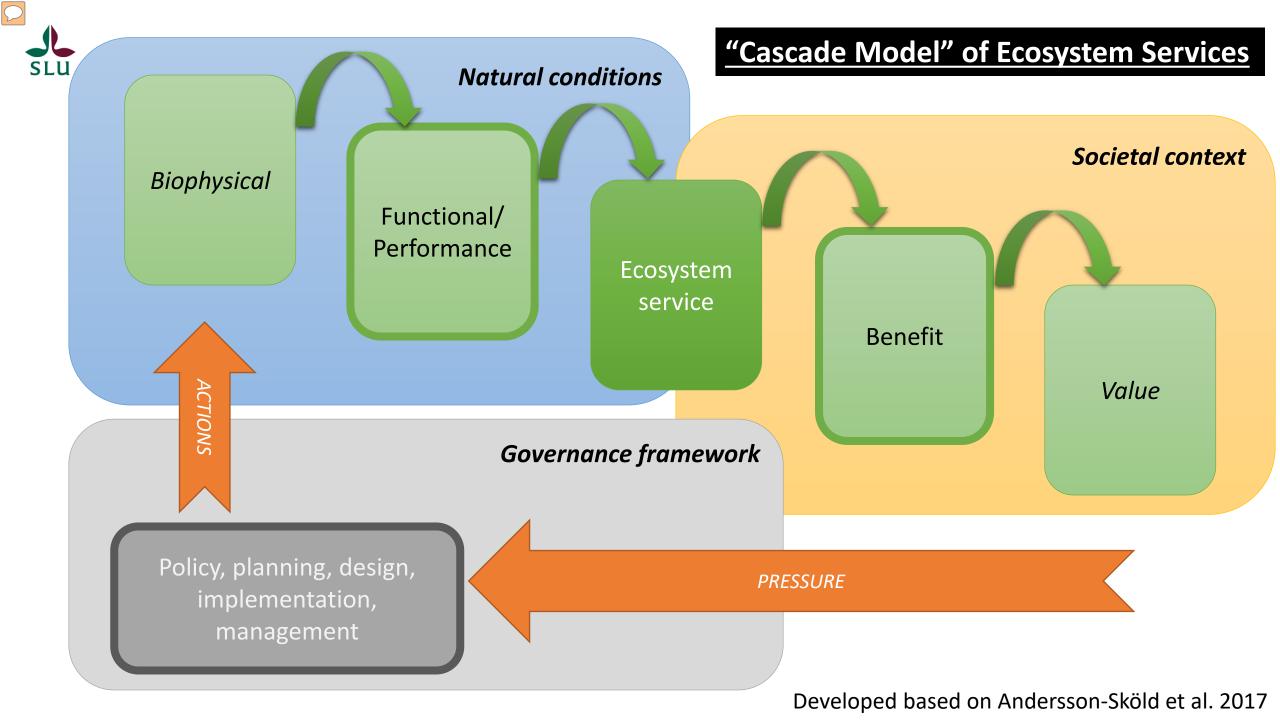
Current Project: How do ecosystem services provided by green roofs develop over the long term as a function of changes in soil and plant communities? (Formas 2020-2022)

Experimental Design: Chronosequence Isolating Long Term Changes in Nutrient Pools and Export (N=15 roofs, Malmö, Sweden) (Soon in Stockholm, Helsinki)

Mitchell et al. (In Revision, Ecological Engineering)

Scaling up: NICE - Innovate and Enhanced Nature-based Solutions for Sustainable Urban Water Cycle (EU H2020, Neil Sang & colleagues)

- Lead : Fundación Centro Tecnológico de Investigación Multisectorial (CETIM, Spain)
- SLU Lead WP 6 Modelling of NBS
- Budget: Approx 5 Million Euros.


Modelling Nature-based Solutions

Integrating Computational and Participatory Scenario Modelling for Environmental Management and Planning

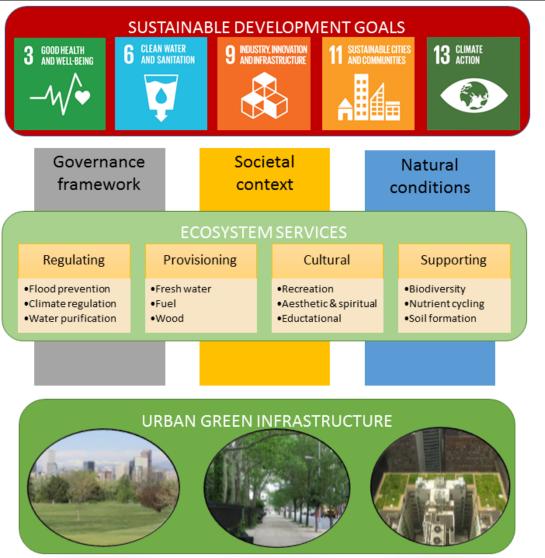
EDITED BY NEIL SANG

Addressing Governance of Urban Sustainable Stormwater Management – Challenges and Interdependencies (Thomas Randrup & colleagues)

Xiu-Juan Qiao PhD Thesis

Urban Sustainable Stormwater Management Described from a Governance Perspective – Challenges and Interdependencies

Xiu-Juan Qiao Faculty of Landscape Architecture, Horticulture and Crop Production Science Department of Landscape Architecture, Planning and Management Albuap


Doctoral thesis Swedish University of Agricultural Sciences Alnarp 2019

Qiao et al. 2018, 2019, 2020

Governance challenges

- Lack of funding
- Lack of knowledge
- Lack of space
- Lack of private stakeholder involvement
- Unclear leadership and responsibility
- Lack of evidence on SSM efficiency
- Lack of legislative support
- Lack of SSM standards

Transdisciplinary Project: How can we design blue-green urban landscapes for a balanced array of ecosystem services supporting the UN SDGs? (Formas, 2019-2020)

Malmö Cincinnati Addis Ababa Approach: Foundational studies in cities with different natural conditions, societal context and governance framework

Ode Sang et al. in review, Gamstetter et al. 2020

Ode Sang et al. in review, Gamstetter et al. 2020

 \bigcirc

	PROVISION			PRIORITY					
Regulating ES	ADD	CIN	MAL	ADD	CIN	MAL	ADD	CIN	MAL
Air quality regulation									
Water quality regulation									
Reduction of noise									
Storm water management									
Flood control	Ţ								
Wastewater treatment									
Local climate regulation									
Pollination									
Carbon sequestration									
Adaptation to climate change									
Pest and disease control									
Supporting ES									
Biodiversity									
Habitats for species									
Erosion prevention									
Soil quality and fertility									
Nutrient cycling									

Fig. 6. Results from pilot study workshops with expert stakeholders in Addis Ababa, Ethiopia (ADD), Cincinnati, USA (CIN) and Malmö Sweden (MAL). The table presents stakeholder assessments of current

Legend PRESENT or SUFFICIENT INTERMEDIATE LACKING or URGENT

Challenges and potential ways forward

- Urbanization and climate change lead to complex interrelated challenges in cities that can't be solved by single disciplines
- Ecosystem Services = useful framework
- Research is needed:
 - of whole systems
 - at multiple spatial scales
 - long-term
 - across disciplines and domains (technical, social, ecological)
 - at different locales/regions in different climates for comparison
 - Involving policy-makers and other stakeholders

What about: Transdisciplinary Urban LTER with water focus SLU baltimoreecosystemstudy.org PUBLICATION: Ecological Biophysical Domain Social - Ecology Interactions IMORE ECOSYSTEM STUDY Long Term Ecological Research

Technological SETS Technological Social -Infrastructural Economic Domain Domain Social - Technological Interactions

Thank you! ishi.buffam@slu.se