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Living organisms are constantly exposed to wide ranges of environmental cues. They react to these cues by un-
dergoing a battery of phenotypic responses, such as by altering their physiological and behavioral traits, in order
to adapt and survive in the changed environments. The adaptive response of a species induced by environmental
cues is typically thought to be associated with its genetic diversity such that higher genetic diversity provides in-
creased adaptive potential. This originates from the general consensus that phenotypic traits have a genetic basis
and are subject to Darwinian natural selection andMendelian inheritance. There is no doubt about the validity of
these principles, supported by the successful introgression of specific traits during (selective) breeding. However,
a range of recent studies provided fascinating evidences suggesting that environmental effects experienced by an
organism during its lifetime can have marked influences on its phenotype, and additionally the organism can
pass on the acquired phenotypes to its subsequent generations through non-genetic mechanisms (also termed
as epigeneticmechanism) – a notion that dates back to Lamarck and has been controversial ever since. In this re-
view, we describe how the epigenetics has reshaped our long perception about the inheritance/development of
phenotypes within organisms, contrasting with the classical gene-based view of inheritance. We particularly
highlighted recent developments in our understanding of inheritance of parental environmental induced pheno-
typic traits in multicellular organisms under different environmental conditions, and discuss how modifications
of the epigenome contribute to the determination of the adult phenotype of future generations.
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1. Introduction

In the past centuries, our understanding of evolution has mostly
been based on the theory of ‘Modern Synthesis’ focusing solely on the
role of natural selection on the amount and structure of genetic varia-
tion (Laland et al., 2014; Paun et al., 2010). While there is no doubt
about the validity of this neo-Darwinian evolutionary theory, more re-
cently, several lines of studies have suggested that environmental ef-
fects experienced by an organism during its lifetime can have marked
influences on its phenotype, and these acquired phenotypes can get
transmitted to subsequent generations through non-genetic mecha-
nisms, also termed as epigenetic mechanism (Kishimoto et al., 2017;
Norouzitallab et al., 2014, 2016; Stadlbauer, 2017). The notion that ac-
quired traits induced by environmental cues could become heritable
dates back to Lamarck and has been controversial ever since (Jablonka
and Lamb, 2002; Holliday, 2006). In this review, we describe how the
field of epigenetics has reshaped our long perception about the inheri-
tance/development of phenotypeswithin (some) organisms. In particu-
lar, we will highlight recent developments in our understanding of
inheritance of parental environment induced phenotypic traits inmulti-
cellular organisms under different environmental conditions, and dis-
cuss how modifications of the epigenome might contribute to the
determination of the adult phenotype of future generations. Recent ad-
vances in our ability to study the integrity of the genome will help to
identify true epigenetic phenomena.
2. Epigenetics - a historical perspective

2.1. Epigenetics theory - development and evolution

Epigenetics has become one of the buzz words of biology in recent
years. Despite being a fashionable topic in modern biology, the term
‘epigenetics’ is old and has a complex history. In fact, the adjective ‘epi-
genetic’ existed many centuries before the noun ‘epigenetics’. It was,
however, linked, to “epigenesis” and not “epigenetics.” The term “epi-
genesis” was coined by the physician and physiologist William Harvey
around 1650 for the conception of development as a gradual process
of increasing complexity from initially homogeneous material in the
egg or spore, a concept that was originally proposed by Aristotle in the
3rd Century BC. In the year 1942, the developmental biologist and evo-
lutionist Conrad H. Waddington introduced the word ‘epigenetics’ to
the lexicon by combining the words genetics with epigenesis
(Jamniczky et al., 2010), and he used it to describe the influence of
environmental cues on the development of specific phenotypes through
genotype-environment interactions. In his characterization of the
“epigenotype” he speculated about a biological system inwhich concat-
enations of processes are linked together in a network, so that a distur-
bance at an early stagemay gradually causemore andmore far-reaching
alterations in many different organs and tissues (Waddington, 1957).
His often-cited model of an “epigenetic landscape”, describing the vari-
ous developmental pathways a cell might take during differentiation,
attributes amajor role to the geneswhich underlie the landscape, acting
to structure it. That is to say, according toWaddington, the expression or
repression of particular genes, presence or absence of particular envi-
ronmental clues and genotype-environment interactions determines
which path the cell will follow from a certain point of divergence.
Waddington's epigenetic landscape is a metaphor for how gene regula-
tion modulates phenotypic development as a consequence of environ-
mental variation. Waddington proposed ʽgenetic assimilationʼ as a
mechanism that allows certain acquired characteristics to become her-
itable (Noble et al., 2014; Pigliucci et al., 2006). Genetic assimilation is a
process during which environmentally induced phenotypic variation
becomes constitutive and is maintained in absence of the initial envi-
ronmental signal. This viewwas broadened by Nanney (1958), who de-
fined epigenetic as the causes of heritable differences that are not
dependent on changes in DNA sequence.
2.2. Modern epigenetics - the definition

In themodern aspects, “an epigenetic trait has been defined as a sta-
bly heritable phenotype resulting from changes in a chromosomewith-
out alterations in the DNA sequence” - a definition that was formulated
in 2008 at a Cold Spring Harbor meeting (Berger et al., 2009). Owing to
the fact that “epigenetics” has a complex history, the term is therefore
often employed loosely and inconsistently, and is sometimes used as a
synonym for “epigenetic inheritance”. To avoid misinterpretations, we
describe the term ‘epigenetic inheritance’ in this review as amechanism
that permits the stable transmission of parental environment-induced
phenotypic traits to a subsequent generation or generations without
any alteration in the DNA sequence (Kelly et al., 2010). Three main
types of epigenetic inheritance have been proposed (Moshe Szyf,
2015a; T. Wang et al., 2017, Y. Wang et al., 2017) and these include:
(i) intergenerational or cross-generational effects, such as the impact
of in utero or paternal exposure to particular environmental cues (e.g.
nutrition, stress) on the developing embryo and its germline (only the
F1 generation) (Radford et al., 2014); (ii) multigenerational effects
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(from the F1 to the F2 generation) (Dias and Ressler, 2014); and (iii)
transgenerational effects that are found in more than three generations
(Anway et al., 2005; Greer et al., 2016; Norouzitallab et al., 2014, 2015,
2016; Rechavi et al., 2011).

3. Mechanisms underlying epigenetic modifications

Numerous mechanisms for epigenetic modifications have been
identified in vertebrates and invertebrates, and new mechanisms are
likely to emerge. Key mechanisms underlying epigenetic modifications
include: chromatin remodeling,methylation of cytosine in CpG dinucle-
otides (often referred to as DNA methylation), histone tail N-terminal
modification, and post-translational modification of genes regulation
by non-coding/small RNA (ncRNA/sRNA). Collectively, these processes
and the components uponwhich they act constitute the epigenome. In-
dividually or in concert, they play a key role in turning gene expression
on or off, thus facilitating or inhibiting the production of specific pro-
teins. The in-depth detailed description of these processes is beyond
the scope of this review.However, a brief overviewof the epigenetic fac-
tors and processes is presented in the subsequent sections, and a glos-
sary of terminologies is provided to assist the reader. For further
details, the reader is referred to the original studies describing the epi-
genome function (for reference see Table 1).

3.1. DNA methylation

The first evidence for the possible role of DNA methylation or de-
methylation as an important biological process was described by
Griffith and Mahler (1969). Currently, DNA methylation is the most
studied epigenetic mechanism. It involves the modification of a DNA
base, most often at the fifth carbon atom of cytosine (or at the sixth ni-
trogen atom of adenine), with the enzymatic addition of amethyl (CH3)
group from S-adenosyl-L-methionine (SAM) in the presence of DNA
methyl transferase (Métivier et al., 2008). This affects the coiling of
DNA around histones and changes the potential binding of the tran-
scriptional factors. DNA methylation is widespread in plants and ani-
mals, and functions to generally suppress gene transcription or
maintain it at a silenced state through methylation of CpG islands,
mostly near promoters of genes (Jones, 2012). Studies have also
shown that DNA methylation is found throughout genes, and not just
in promoter regions (Feng et al., 2010; Sarda et al., 2012; Zemach
et al., 2010). At present, little is known about the influence of the envi-
ronmental cues on genome-widemethylation patterns (Asselman et al.,
2017).

The position of DNA methylation relative to the gene (i.e., intron,
exon, transcriptional start site, or promoter) determines how gene ex-
pression is influenced by methylation. For example, gene body methyl-
ation has multiple functions, that include suppressing intragenic
promoter activity (Maunakea et al., 2010), alternative splicing (Sati
et al., 2012) and controlling transcriptional elongation (Lorincz et al.,
2004) ensuring that the first and last exons are included in a transcript
(Sati et al., 2012), while DNA methylation at the 5′ end of the gene was
linked with gene silencing (Brenet et al., 2011).

The DNA methylation machinery is relatively conserved within an
organism (Hernando-Herraez et al., 2015). However, the absolute levels
and patterns of DNA methylation may vary substantially between dif-
ferent tissues, developmental stages, species and can be directly modu-
lated by extrinsic environmental cues (Bocklandt et al., 2011; Fritsche
et al., 2013; Hannum et al., 2013). For instance, in some invertebrates,
methylated DNA was found primarily within the coding regions and
its pattern was closely associated with gene function (Roberts and
Gavery, 2012). The methylation level of DNA cytosine in the inverte-
brate can be 0% like in the nematode worm Caenorhabditis elegans
(Greer et al., 2015) or very low (between 0.1 and 0.4% of the DNA cyto-
sine) like in the fruit fly Drosophila melanogaster (Boffelli et al., 2014). A
similar value of 0.4% was recorded in the aquatic invertebrate Artemia
(Norouzitallab et al., 2014) for the proportion of cytosines that was
hypermethylated throughout the DNA. In the genome of honey bee
Apismellifera and thewaspNasonia vitripennis, all the three orthologous
of DNMTs are found and CpG methylation has been observed in several
genes,with the global DNAmethylation level of about 1.5% of total cyto-
sine (Rasmussen and Amdam, 2015). Vertebrates, in contrast, have rel-
atively higher levels of DNA methylation. For example, in mammalian
somatic tissues the genomic DNA is hypermethylated at 70–80% of all
CpG sites across the genome (Li and Zhang, 2014). This methylation
can occur evenly throughout the entire genome (for more details, see
reviews (Feng et al., 2010; Varriale, 2014).Variations in themethylation
levels across species suggest that DNA methylation may have different
functions in different organisms. Notably, the heritability of DNAmeth-
ylation has marked it as an attractive feature in the study of epigenetic
inheritance. Specifically, during DNA replication, DNA methylation of
newly generated CpG sequences occurs across from a methylated CpG
in the parental strand, thus representing a biochemical mechanism for
replicating an epigenetic mark (Law and Jacobsen, 2010). The potential
of DNAmethylation to act as a heritable epigenetic mark has been dem-
onstrated in a few studies (Lämke and Bäurle, 2017; Stadlbauer, 2017;
Zheng et al., 2017). However, whether the same mechanism of herita-
bility during DNA replication can be extended to meiosis to enable
non-genetic inheritance across generations remains to be established.

It is also interesting tomention that the occurrence of DNAmodifica-
tion is not limited to 5mC residue. In fact, some studies revealed the bi-
ological importance of methylation on other nucleotides, such as N6-
methyladenine (m6A). For instance, adenine methylation was found
to be essential for the viability of several bacteria (Reisenauer and
Shapiro, 2002) and fungi (Mondo et al., 2017) and fungi (Mondo et al.,
2017). Similarly, the occurrence of m6A has also been reported in eu-
karyotic cells, such as Arabidopsis thaliana (Lianga et al., 2017),
C. elegans (Greer et al., 2016) and even mammalian cells (Wu et al.,
2016). However, the significance of m6A in the transmission and ex-
pression of modified phenotypes across generations remains unclear.

3.2. Histone modifications or histone code

One of the primary roles of histone is to coil the DNA into a smaller
volume for fitting in the nucleus of the cell in form of a nucleosome. Nu-
cleosomes contain 147 base pairs, coiled twice around an octamer of
histone (H) proteins (two molecules of H2A, H2B, H3 and H4). The
linker histone protein H1 at the outside of the nucleosome further com-
pact the chromatin.

Till the 1990s, DNA packingwas the only role considered for histone
proteins. However, in the past three decades, accumulating evidences
suggested that these proteins play significant roles in: 1) the regulation
of gene expression, 2) DNA damage repair, 3) DNA replication and re-
combination, and 4) heritable epigenetic regulation (Lennartsson and
Ekwall, 2009; Leroux et al., 2017; Parisa Norouzitallab et al., 2014;
Siklenka et al., 2015). Apart from the small globular structure, histones
contain a more flexible and charged NH2-terminus named ʽhistone
lysine tail (K)ʼ that protrudes from the nucleosome and contains
25–30 basic amino acids rich residues (Jenuwein and Allis, 2001). The
affinity of the histones for each other, for DNA and for other chromatin
associated proteins is determined by post-translational modifications of
their protruding amino-terminal tails (Araki and Mimura, 2017; Jih
et al., 2017; Munshi et al., 2009). The covalent modifications (acetyla-
tion, phosphorylation, methylation or ubiquitination) on the histone
tail can exhibit exquisite variationswhich in turn regulates the chroma-
tin remodeling and different contacts with the underlying DNA. Addi-
tion or removal of histone modifications at specific points on the tails
can readily condense or relax the chromatin resulting in causing reduc-
tion or facilitation of transcription.

The distinct histone tail modifications can occur sequentially or in
combination, to create a histone code that is read by other proteins to
bring about downstream effects (Fig. 1; Gardner et al., 2011). Also



Table 1
Effect of environmental cues on the induction of epigenetic inheritence of phenotypes.

Environmental
cue

Epigenetic
modification

Model Target
organ/gene

Manipulation Phenotype Transmission References

Contaminants DNA methylation Rat Germline Endocrine disruption (vinclozolin methoxychlor Decrease in sperm count and reduction in sperm
motility.

F1 Anway et al. (2005)

Granulosa
cells

Pesticide mixture (permethrin and insect repellant) Promotes early-onset of female puberty, apoptosis of
Spermatogenic cell Decrease in ovarian primordial
follicle pool size

F1, F2, F3 Manikkam et al. (2012)

Plastic mixture (bisphenol A and phthalates) Increased cysts resembling human polycystic ovarian
disease, Decreased in the ovarian primordial follicle
pool size resembling primary ovarian insufficiency

F1, F3 Nilsson et al. (2012)

Jet fuel
Fungicide
Ioxin and a hydrocarbon mixture

H3K27me3 Human Plasma Contaminated drinking water with arsenic Higher chances for having infants with
myelomeningocele (bifidia)

F1 Tauheed et al. (2017)

H3K27me3, H3K36me3, H3K9ac, H3K9ac,
H3K9me3, H3K27me3

Human Blood
leukocytes

Air pollution, with black carbon (BC), and elemental
components (potassium, sulfur, iron, silicon,
aluminum, zinc, calcium, and titanium).

Sex-stratified analyses showed that associations
between H3K9ac, and between BC and H3K9me3, were
stronger in female truck drivers than in male truck
drivers

F0 Zhenga et al. (2017)

Behavior DNA methylation and histone acetylation Rat Hippocampus Poor maternal care Central infusion of a histone deacetylase inhibitor
removed the DNA methylation

F1 Weaver et al. (2004),
Weaver (2007)

DNA methylation and Histone modification Mice Brain Nicotine exposure Nicotine addiction F0, F1 Yohn et al. (2016); Jung
et al. (2016)

Environmental cue Epigenetic modification Model Target organ/gene Manipulation Phenotype Transmission Reference

Heat stress DNA methylation and histone acetylation Parthenogenetic Artemia Entire body Elevated temperature Increased animal's robustness against
biotic and abiotic stressors

F1, F2, F3 Norouzitallab et al. (2014)

Chromatin remodeling though stress
induced dATF2 phosphorylation and H3K9Me3

Drosophila drosophila activation
transcription factor 2 (dATF-2)

Elevated temperature Eye pigmentation and wing notches F1 Seong et al. (2011)

Predator DNA methylation Aphid Entire body Predator presence or crowding
stressor in parental generation

Production of winged animals F1 Walsh et al. (2010)

Not well determined Daphnia Entire body Exposure to predator Long pointy helmets, tail spikes
and neck teeth

F1 Feil and Fraga (2011)

Environmental cue Epigenetic modification Model Target organ/gene Manipulation Phenotype Transmission References

Nutrition Not determined hamster Phenotype Malnutrition More female offspring, low weight of progenies F1, F2 Huck et al. (1987)
DNA methylation Agouti mice Augouti gene Inclusion of folic acid, cobalamin,

choline, and betaine in the diet
A in the coat color F1 Dolinoy (2008);

Lillycrop and Burdge (2015)
Apis mellifora Dissected gland-free brains of

egg-laying queens and 8-d-old workers
Feeding on royal jelly Development of queens F0 Lyko et al. (2010)

Human IGF2 Dutch Hunger Winter Male offsprings whose mothers were exposed to
famine during the last trimester of pregnancy were less
obese than controls, whereas exposure in the first half
of pregnancy resulted in higher obesity rates

F1 Ravelli et al. (1976),
Heijmans et al. (2008), and
Veenendaal et al. (2013)

Environmental cue Epigenetic modification Model Target organ/gene Manipulation Phenotype Transmission References

Biotic stressors Not determined Crickets Entire animal Exposure to pathogen or pathogen cell wall Increased reproduction F0 Adamo (1998)
Histone acetylation H3K4Me3, HMGB1 Artemia Entire animal Parental exposure to pathogenic Vibrio Increased animals resistance against the same pathogen

and increased animals reproduction
F0, F1, F2, F3 Norouzitallab et al. 2015, 2016
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Fig. 1. Histone tails modifications. Histones post-translational modifications (PTM) are the covalent addition of marks that can regulate gene expression through forming active regions
(euchromatin formation), or inactive regions (heterochromatin formation. A pictorial representation of PTMs on histones and their biological roles.
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histone codes can occur differently on different histones and may be
transiently altered by the cell environment (Bird, 2007; Gonzales-cope
et al., 2016; Kishimoto et al., 2017). Highly specific enzymes are respon-
sible for the histone tailsmodification (Barnetova et al., 2012). There are
many detected residuals of the histones where the modifications can
take place and yet more are expected to be discovered. This infinite en-
zymatically regulated array of modifications results in enormous plas-
ticity for functional responses. For example, methylation at lysines or
arginines may be in one of three different forms: mono-, di-, or
trimethyl for lysines and mono- or di- (asymmetric or symmetric) for
arginines (Kouzarides, 2007). For example, acetylation of histones or
di/trimethylation of H3K4 leads to euchromatin (decondensed chroma-
tin) formations, creating conditions for higher gene transcription. Con-
versely, condensed heterochromatin lacks this histone acetylation and
is enriched in methylated H3K9 and H3K27 (Mattout et al., 2015).

It has been reported that histone methylations are regulated by two
key enzymes: histone lysine methyltransferases (KMTs) and histone ly-
sine demethylases (KDMs) (Nottke et al., 2009, 2011). KDMs have a cat-
alytically active site named ʽJumonjiʼ domain (JmjC). The demethylation
occurswhen JmjC utilizesmultiple cofactors to remove themethyl group
through hydroxylation. The demethylation by JmjC can be on any of the
mono-, di-, and tri-methylated substrates. For other histone modifica-
tions, two important types of proteins are responsible: trithorax group
proteins and polycomb (family of proteins that can remodel chromatin)
group proteins, which are associated with transcriptionally active eu-
chromatin and transcriptionally silent heterochromatin, respectively
(Schuettengruber et al., 2007).

Histone modification and DNA methylation require different sets of
enzymes and are carried out by different chemical and biochemical re-
actions. However, there is increasing evidence of cross-talk between
the two processes (Cedar and Bergman, 2009; Lan et al., 2017; Spruijt
and Vermeulen, 2014), suggesting that these mechanisms act together
in modulating gene expression programming within organisms
(Champagne, 2016). It is not known how cross-talk between these
two systems is mediated, but data implies that, in at least some circum-
stances, changes to histone modifications may be induced prior to
methylation changes that then serve as more stable epigenetic marks
(Park et al., 2008). In plants, such as Arabidopsis and also in the inverte-
brate Artemia sp., inheritance of acquired phenotypes were reported to
be mediated by altered DNA methylation levels and histone modifica-
tion (Holeski et al., 2012; Norouzitallab et al., 2014; Springer and
Schmitz, 2017). Additionally, in species, such as C. elegans and
D. melanogaster (Ciabrelli et al., 2017; Greer et al., 2014; Norouzitallab
et al., 2016), histone methylations were shown to play a key role in
the inheritance of acquired phenotypes. These results suggest that his-
tone modifications have the ability, along with DNA methylation, to
serve as an epigenetic memory from one generation to the next.
3.3. Non-coding RNA

Small non-coding RNAs (ncRNAs) are RNAmolecules that do not di-
rectly code for a protein. These small molecules of about 20–30 nucleo-
tideswith a two-base overhang at the 3′ end, have emerged as powerful
regulators of gene expression and genome stability (Moazed, 2009). In
fact, ncRNAs have been claimed to be responsible for regulating the ex-
pression of about 50% of the genes in a cell at the post-transcriptional
level (Goldstein et al., 2017). Members of the regulatory small RNAs in-
clude short interfering RNAs (siRNAs), microRNAs (miRNAs) and piwi-
interacting RNAs (piRNAs) (Carthewand Sontheimer, 2009). siRNAs are
21–22 nucleotides in length and are produced from endogenous double
stranded RNA. They can silence their encoding DNA and are considered
as defender of genome integrity in response to foreign or invasive
nucleic acids, such as viruses, transposons, and transgenes (Anwar
et al., 2017; Carthew and Sontheimer, 2009; Wan et al., 2014). The
vast majority of miRNAs, on the contrary, exerts heterotypic silencing
and is regulators of endogenous genes (Carthew and Sontheimer,
2009). Compared to siRNAs, piRNAs are larger (23–29 nucleotides)
and are produced by a different mechanism (reviewed in (Castel and
Martienssen, 2013). piRNAs were initially discovered in germ-line
cells, but are now known to be widely distributed throughout somatic
tissues (Zheng et al., 2017). In the germ-line, piRNAs mediate
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transposon silencing via chromatin remodeling (Brower-toland et al.,
2009; Elgin and Reuter, 2013; Wang and Elgin, 2011).

In addition to the classical ‘epigenetic systems’ as described in the
above sections, ncRNA were also reported to possess epigenetic poten-
tial. It has been proposed that certain environmental cues can alter the
expression of genes through expression of new or removal of old
ncRNAs (Carthew and Sontheimer, 2009). Additionally, there are con-
clusive evidences for the direct involvement of ncRNAs in parental
environment-induced epigenetic inheritance (Buckley et al., 2012;
Larriba and Mazo, 2016; Rechavi et al., 2014). By means of deep se-
quencing, a large number of RNAs of all classes have been identified in
growing oocytes (Barnetova et al., 2012; Svoboda and Flemr, 2010). Al-
though spermatozoa have a highly condensed nucleus and contain little
cytoplasm, a large portion of the RNA population has been detected in
sperm (Chen et al., 2016; Peng et al., 2012; Sharma et al., 2016), indicat-
ing that RNAs may be involved in the inheritance of acquired
phenotypes.

Furthermore, it was recently shown that tRNA-derived small RNA
fragments in sperm represent a paternal epigenetic factor and contrib-
ute to intergenerational inheritance of paternal high-fat or low-
protein diet-inducedmetabolic disorders, suggesting roles for these epi-
genetic marks in transmitting metabolic disorders across generations
(Chen et al., 2016; Sharma et al., 2016).

4. Sustained epigenetic modifications during cell proliferation and
diversification

In multicellular organisms, the germline is described as diploid cells
that are highly specialized to form gametes and are responsible to pass
the genetic information from parents to the progenies (Hill et al., 2018).
In adults, the germline cells develop into haploid reproductive (gamete)
cells by meiotic divisions in the process of gametogenesis (Hill et al.,
2018; Maamar et al., 2018). Most complex organisms develop from
these very specialized reproductive cells. In bisexual organisms, once
the sperm penetrates the egg, the single diploid totipotent zygote cell
is formed (Condic, 2014). The totipotent cells are capable to differenti-
ate into all the other possible forms of cells required in an adult organ-
ism (Mitalipov andWolf, 2009). Upon fertilization, a series of epigenetic
modifications take place in the parental pronuclei which results in the
Fig. 2.DNAmethylation changes during embryonic development. Most of the epigenetic DNAm
DNA methylation marks are made soon after, during early embryogenesis after which tissue sp
Adapted from Aguilera et al. (2010).
removal of the gamete-specific modifications to facilitate the ability of
embryonic development towards birth (Rivera and Ross, 2013). For
this purpose the gamete cells epigenome is erased through a process
called ʽreprogrammingʼ in order to return the cells to a genetic ʽblank
stateʼ in which new epigenetic marks determine the fate of the cells
(Fig. 2; Aguilera et al., 2010). For example, inmammals, DNA is progres-
sively demethylated during the pre-implantation states, afterwhich the
DNA is re-methylated (Bocock and Aagaard-Tillery, 2009). Still, a very
small percentage of genes keep their epigenetic marks during this pro-
cess and pass unchanged from parents to progenies through the mech-
anism of self-sustaining feedback loop that was first described in
Escherichia coli (Jablonka and Raz, 2009).

Dynamic regulation of the oocyte genome is essential for program-
ming the embryo for achieving temporally required developmental
landmarks. In the first few days (4 days in human) of embryonic devel-
opment, more totipotent stem cells are produced by mitotic division of
the zygote after which the cells begin to specialize into pluripotent cells.
(Aguilera et al., 2010; Condic, 2014). Interestingly, embryonic stem cells
achieve their pluripotent status by locking important regulator genes
for future expression, using a polycomb group-mediated repressive his-
tone lock which prevents precocious expression of genes that initiates
the differentiation of cells along specific differentiation (Szyf, 2015b)
pathways, but also allows the same genes to be primed for future ex-
pression (Spivakov and Fisher, 2007).

The pluripotent cells then differentiated into multipotent cells,
which subsequently develop into progenitor cells that are programmed
to differentiate into multiple, but limited cell types through specific
gene activation. Therefore, the embryonic stem cells regeneration ho-
meostasis and differentiation require selective activation or suppression
of specific transcription programs (Zhou et al., 2011). Thus, synchro-
nized epigenomic modifications are essential for lineage specification
and maintenance of cellular identity (Gifford et al., 2014; Smith and
Meissner, 2013; Zhou et al., 2011).

Despite the developmental stability maintained by the stem cells
through genetic and epigenetic information, the embryo is highly influ-
enced by the external environment of the parental generation
(Spannhoff et al., 2011). A growing body of evidence shows that there
are critical time points during the process of embryogenesis and pri-
mordial germ cells specification in which the epigenome is sensitive
ethylationmarks are erased during early embryonic development.De novo, genome-wide
ecific epigenetic marks are laid down
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to environmental cues and therefore, changing environment can influ-
ence the epigenetic information both within developing individuals
and across generations (Cavalieri and Spinelli, 2017; Bertoldo et al.,
2015). Additionally, the transgenerational epigenetic effects can also
originate either from direct changes in the ancestral germline or by
the transfer of information from ancestral somatic cells to the ancestral
germline (Devanapally et al., 2015; Huypens et al., 2016).
Environmentally-derived epigenetic changes can be inherited mitoti-
cally through somatic cells. This is considered as a potential mechanism
by which environmental effects on the epigenome can leave long-term
effects on gene expression (Devanapally et al., 2015; Heard and
Martienssen, 2014; Jirtle and Skinner, 2007). The ability of the parents
for adaptation to the new environmental conditions determines the
plasticity of the embryo towards that specific environmental variation.
This information is passed on through germline transfer of the informa-
tion (Devanapally et al., 2015).

5. Environmental cues, epigenetic modification and phenotypes

Apart from the epigenetic modifications that occur during the initial
development and embryonic stages, the epigenetic modifications
brought about by the environmental cues have also been reported to in-
duce phenotypic development or variation within a number of organ-
isms (e.g. Artemia, Daphnia, mouse). The resultant acquired
phenotypic characteristics not only persist throughout life but also ap-
pear to be transmitted to subsequent generations (Aguilera et al.,
2010; Norouzitallab et al., 2014, 2016). As described in the above sec-
tion, during gametogenesis, the epigenomegets globally reprogrammed
(Blunk et al., 2017; Kota and Feil, 2010; Norouzitallab et al., 2014;
Rwigemera et al., 2017; Teixeira and Colot, 2010). The remodeling pro-
cesses make gonadal cells particularly vulnerable to extrinsic factors,
even in exposed adults (Yauk et al., 2008) and may explain why appar-
ent transgenerational effects are observed. However, true epigenetic
transgenerational inheritance implies that the maternal or paternal an-
imal or plant already had the epigenetic change and transmitted the
change to its offspring, whose cells were not exposed. In mammals,
only epigenetic marks transmitted to the F3 generation are truly
transgenerational, as the developing germ cells that give rise to the F2
generations are already present (and could thus have been exposed)
during the embryonic development of the F1 generation (Drake and
Liu, 2010; Feil and Fraga, 2011; Youngson andWhitelaw, 2008). There-
fore, transgenerational inheritance of environmentally-induced epige-
netic modification is considered authentic only if the acquired
phenotypes are still present at F3 generation.

In animals, that include both vertebrates and invertebrates, many
examples associate environmental influences to epigenetic changes.
Epigenetic influences have been observed with environmental contam-
inants (e.g. inorganic contaminants, endocrine disruptors, chemicals
used as pesticides or fungicides), nutritional factors, drugs, physiochem-
ical and biochemical environmental variations, and even maternal/pa-
ternal behavior, such as culture, food, smoking, maternal care and
depression (for details, see review Skinner, 2015; T. Wang et al., 2017,
Y. Wang, 2017). The environmentally-induced epigenetic modifications
affect the organism's phenotypes and that of subsequent generations by
bringing about changes in gene expression. This phenomenon provides
a usefulmechanism for the progeny to adapt to the new environment. A
growing body of evidence suggests that epigenetic inheritance could
occur in most species (Table 1). Some examples of environmentally-
induced epigenetic modifications and inheritance are described below.

5.1. Environmental contaminants and epigenetic inheritance

A variety of environmentally ubiquitous contaminants appear to
have broad effects on the phenotypes of future generations even
when the stressful environments no longer exist (Carvan et al., 2017;
Kishimoto et al., 2017). A typical study showing this phenomenon
involved the exposure of female rats to two different endocrine
disruptors, vinclozolin and methoxychlor, at a critical time during go-
nadal sex determination (i.e. embryonic day (E) 8–15 in the rat). Results
showed that exposure to toxicant resulted in adult testis phenotypes
characterized by decreased spermatogenesis capacity andmale infertil-
ity (20% decrease in sperm count and a 25–35% reduction in spermmo-
tility) across four generations (M.D. Anway et al., 2005). Interestingly,
these phenotypes were found to be associated with altered DNA meth-
ylation in a subset of genes in the male germline (Anway et al., 2005).
However, the involvement of genetic factors e.g. mutations possibly
caused by the chemical exposure cannot be fully excluded in this
study. Additionally, the authors also did not identify the specific gene
(s) responsible for this environmental toxicant-induced inheritance
nor did they exclude the involvement of other epigenetic regulations,
such as histone modification or sncRNAs. In another study, Asselman
et al. (2017) showed that on exposure of water flea Daphnia magna to
the toxic cyanobacterium Microcystis aeruginosa, a differential pattern
of DNAmethylation on exons was found between the exposed and un-
exposed animals. The observed patterns were enriched for serine/thre-
onine amino acid codons and genes related to synthesis, transportation
and degradation of protein. It was also observed that genes with differ-
ential methylation correspondedwith genes thatwere susceptible to al-
ternative splicing in response to Microcystis stress. In this study, the
transgenerational effects of toxin exposure were not examined.

In another study, the epigenetic transgenerational effects in re-
sponse to various environmental toxicants and their relevant mixtures,
such as pesticide mixture (permethrin and insect repellant DEET), a
plastic mixture (bisphenol A and phthalates), dioxin (TCDD) and a hy-
drocarbon mixture (jet fuel, JP8) was investigated in rats (Manikkam
et al., 2012). The F0 gestating female rats were exposed to the toxicants
during the period of embryonic gonadal sex determination. The animals
from the subsequent F1–F3 generationswere obtained in the absence of
any contaminant. In those animals, the parental or ancestral exposure to
plastics, dioxin and jet fuel promoted early-onset of female puberty, af-
fected permatogenic cell apoptosis and decreased primordial follicle
pool size transgenerationally. DNAmethylome analysis of the F3 gener-
ation sperm (promoter epigenome) revealed that there were differen-
tially methylated regions in DNA in the sperm of all exposure lineage
males and was consistent within a specific exposure lineage, but
different between the exposures. Furthermore, a number of other envi-
ronmental chemicals, including fungicides, pesticides, or plastic com-
pounds have also been shown to induce the epigenetic inheritance of
abnormal reproductive or metabolic phenotypes in animals, including
obesity, the polycystic ovary syndrome (PCOS), pregnancy defects, or
germ cell apoptosis (Anway et al., 2005; Bhandari and Tillitt, 2015;
Laing et al., 2017; Monk, 2015; Nilsson et al., 2012; Skinner et al., 2013).

Additionally, some studies reported the role of environmental pol-
lutants, such as airborne particulate matters including black carbon
(Tauheed et al., 2017) or arcenic (Zhenga et al., 2017) on chromatin re-
modeling throughmajor histone tailsmodifications. In the study carried
out by Tauheed et al. (2017), it was shown that in Bangladesh, where
the water is heavily contaminated with arsenic, the mothers with
higher levels of H3K27me3 in their plasma have lower chance for hav-
ing the infantwithmyelomeningocele (bifida). In this study, the authors
found that arsenic exposure, as estimated by arsenic concentration in
toenails, was associated with lower total H3 concentrations in plasma
inwomenwith folate deficiency. The lower levels of H3were associated
with lower H3K27me3 and higher chances of having infants with bifida
disease.

By carrying a study on truck drivers, Zheng et al. (2017) highlighted
the epigenetic impacts of exposure to traffic air polutent. This studywas
perfomed on 60 truck drivers and 60 office workers of Beijing. The in-
creased levels of exposure to air pollutants and more specifically black
carbon were associated with lower H3K27me3 and H3K36me3 levels.
Occupation-stratified analyses showed associations between black car-
bon and both H3K9ac and H3K36me3 that were stronger in office
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workers than in truck drivers. From these evidences, it can be suggested
that environmental contaminants are able to cause modifications
within the epigenome of an organism and induce long-lasting pheno-
typic changes over generations. Inmost of the above studies, DNAmeth-
ylationwas used as an epigenetic marker to determine the involvement
of epigenetics in the development of phenotypes. The involvement of
more epigeneticmarks, such as ncRNA, histones post translationalmod-
ifications remained to be established.

5.2. Behavioral changes and epigenetic inheritance

The field of behavior epigenetics has brought about a paradigm shift
in our understanding of the role of genetics in explaining human behav-
ior. The parental adverse and traumatic experiences during the early pe-
riod of life, including poor maternal care (Champagne, 2016; Conradt
et al., 2016; Sauce et al., 2017; Weaver et al., 2004), unpredictable ma-
ternal separation (Franklin et al., 2010; Gapp et al., 2014), chronic vari-
able stress (Deng et al., 2017; Dietz et al., 2011; Morgan and Bale, 2011;
Rodgers et al., 2015, 2013; Sagarkar et al., 2017) resulted in behavioral
and emotional disorders in individuals later in life or in their offspring
across successive generations. Temporary mental stress caused by ma-
ternal separation during the early developmental period modified the
epigenetic status of the promotor of the glucocorticoid receptor (Gr)
in the rat infant hippocampus. This led to changes in gene expression
caused by an altered epigenome in the pups and it resulted in persisted
abnormal gene expression and behavior throughout life (Weaver,
2007). Furthermore, Franklin et al. (2010) also provided evidence that
unpredictable maternal separation could model the transgenerational
inheritance of complex behavioral alterations in mice. Subjecting mice
to maternal separation at early stage induced depressive behaviors
and altered the animals' response to aversive environments. Interest-
ingly, some of the behavioral phenotypes were transmitted to F1 male
offspring and also to the subsequent generation (F2 female and F3
male offsprings). The exact mechanisms behind this complex expres-
sion mode remain obscure. However, the maternal separation caused
a marked alteration in the level of DNA methylation at CpG islands of
the methylated CpG binding protein 2 (Mecp2), cannabinoid receptor
2 (Cnr2), and corticotropin release factor receptor 2 (Crfr2) genes in
adult sperm of stressed males that experienced separation. Similar
changes in DNA methylation were also found in the brain and sperm
of the offspring (Franklin et al., 2010). These results suggest that early
traumatic stress amends behavior and modifies the epigenetic status
across generations, providing behavioral and molecular correlates to
complex traits induced by the early environment (T. Wang et al.,
2017, Y. Wang, 2017).

Another example of parental care effects on the offspring phenotype
was observed in licking-grooming behavior of maternal rats towards
their pups (Weaver et al., 2004). The F1 pups that experienced in-
creased grooming and licking and arch-back nursing from the mother
at the beginning of their lives and while growing, exhibited decreased
fearfulness and more modest hypothalamic–pituitary–adrenal (HPA)-
axis responses to stress than those who did not experience this care
(Weaver et al., 2004). Alterations in both DNAmethylation and histone
modification at the nuclear receptor subfamily 3 group C, member 1
(Nr3c1) locus in the hippocampus of the F1 pups receiving higher ma-
ternal care were observed during the first week of postnatal life and
were associatedwith changes inNr3c1-encoded glucocorticoid receptor
expression (Weaver et al., 2004). These findings suggest that increased
parental care positively influences appropriate behavioral responses
and causes adaptive behaviors in F1 offspring. In a similar study,
Champagne et al. (2006), reported that the promoter region of the
alpha subunit of the estrogen receptor was hypermethylated in the hip-
pocampus of low-licking grooming pups, and these changes resulted in
suppressed expression of these receptors. In the study of Weaver et al.
(2004), however, the generation-to-generation acquisition of the nur-
turing behavior does not occur through the gametes but represents a
learned trait, likely through epigenetic regulation in genes such as estro-
gen receptor α1b in the medial preoptic area of the brain (Champagne
et al., 2006). Also in the mice model, maternal's grooming and licking
behaviors towards pups induced epigenetic changes that modified the
animals stress response in the adulthood (Champagne et al., 2006;
Meaney and Szyf, 2005;Weaver et al., 2004). This maternal care caused
increased expression of the hippocampal glucocorticoid receptor (GR)
through histone acetylation andDNAdemethylationwhich later altered
the hypothalamic-pituitary-adrenal axis and the stress response of the
pups (Weaver, 2007). In a further study in non-inbred mice, it was
shown that chronic and unpredictable stress in early life of mice altered
behavioral response not only in the stressed animals when becoming
adult but also in their successive, unstressed generations (up to genera-
tion F3) (Franklin et al., 2010). Also, a link has been established between
the childhood environmental variation and chances for mental diseases
such as depression (Gouin et al., 2017; Lockwood et al., 2015;
Smearman et al., 2016; Uddin et al., 2017). It was found that glucocorti-
coid receptor and brain-derived neurotrophic factor (BDNF) gene pro-
moters were hypermethylated in suicide victims who were exposed to
childhood trauma (Keller et al., 2010;McGowan et al., 2009). In another
study it was found that gene and environment interaction has been re-
sponsible for the transgenerational likelihood of developing migraine
via epigenetic modifications such as DNA methylation (Tietjen, 2016).
All these findings suggest that evolution has equipped organisms with
mechanisms to react specifically and efficiently to certain critical expe-
riences, such as maternal separation and reduced maternal care, and to
transmit this information effectively to their offspring without the need
for the typically slow process of natural selection (Szyf, 2015b).

5.3. Environmental stress and epigenetic inheritance

A number of studies have shown transgenerational effects of stress
in organisms. One of the best examples was our previous work showing
the effects of environmental stress on the emergence and inheritance of
phenotypic traits across three subsequent non-stressed generations
(Norouzitallab et al., 2014). In this study, parthenogenetic Artemia,
which are having apomictic breeding behavior, were used as model or-
ganism. Apomixis implies that a parthenogenetic Artemia population
clone has no other mechanism for genotypic change but mutation,
which may induce genetic differentiation (Abatzopoulos et al., 2003).
On exposure to an abiotic stressor i.e. non-lethal heat stress, the paren-
tal population of parthenogenetic Artemia exhibited increased resis-
tance towards a subsequent pathogenic Vibrio campbellii infection and
this acquired phenotypic trait was transmitted to three successive gen-
erations, of which none was exposed to the parental stressor. Interest-
ingly, this transgenerational inheritance of increased disease
resistance was associated with alterations in the levels of epigenetic
marks, such as global DNA methylation and total histones H3 and H4
acetylation levels (Norouzitallab et al., 2014).

Considering that environmental stress can cause genetic (DNA se-
quence) mutational events, such as environmentally facilitated single-
nucleotide polymorphisms, the involvement of genetic factors in thede-
velopment of observed phenotypes was not excluded in this study.
However, from the available information, it may be suggested that a
non-genetic process is involved in the emergence/inheritance of the ob-
served phenotypic traits or regulation and persistence of epigenetic
modifications. Other examples of the inheritance of the environmen-
tally responsive phenotypes over multiple generations in (genetically
identical) animal or plant models have also been described. For in-
stance, using a genetically identical Arabidopsis thaliana Heynh line
plant model, Whittle et al. (2009) demonstrated that plants exposed
to a mild heat (30 °C) treatment in the parental and F1 generations ex-
hibited markedly improved fitness (5-fold increase in seed production
per individual) in a later generation (F3). The heat-specific fitness im-
provements among F3 plants were preserved even after one generation
(F2) of reproduction under normal temperature circumstances, which
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led to the conclusion of an environmentally induced epigenetic and her-
itable adaptive phenomenon.

Another relevant example of transgenerational inheritance of ac-
quired traits in response to environmental stress was reported by
Seong et al. (2011) on the model organism Drosophila. The authors
demonstrated that heat shock-induced changes in heterochromatin
are transmitted to successive generations. Specifically, a transcription
factor, drosophila activation transcription factor 2 (dATF-2), the homo-
log of which functions in the nucleation and spread of heterochromatin
in fission yeast (Jia et al., 2004), was shown to be involved in the heat
shock-induced epigenetic inheritance (Seong et al., 2011). Using
position-effect variegation-mediated alterations inwhite gene silencing
as a read-out of heterochromatin formation, Seong et al. (2011) showed
that upon heat shock or osmotic stress, dATF-2 was phosphorylated by
stress-activated protein kinases such as p38, which in turn led to the re-
lease of phosphorylated dATF-2 from the heterochromatin region. The
stress-induced heterochromatin disruptionwas found to be transmitted
through the germline. The phenotypes examined (eye color and wing
notches) eventually faded and disappeared in successive generations
unless the stress was applied again. Furthermore, stress-induced het-
erochromatin formation occurs when unstressed insects harboring the
white gene are mated with stressed insects, suggesting that these ac-
quired traits are inherited in a non-Mendelian manner. This result re-
sembles the extensively studied phenomenon of paramutation in
plants, in which a paramutagenic allele causes another allele in the
same nucleus to become silenced (Chandler, 2010). Although the
stress-induced, dATF-2-dependent epigenetic change described in this
study has high penetrance, the phenomenon has not received much at-
tention to date, in part owing to a lack of morphological, physiological,
or behavioral phenotypes in successive generations in response to the
new epigenetic states. Nevertheless, the findings from thiswork suggest
that environmental cues could possibly induce changes in chromatin
state, thereby altering the expression of a subset of genes and creating
specific phenotypes, which then pass on to subsequent generations.
These findings were further supported by the transgenerational exper-
iments carried out in aphids (also known as plant lice), in which the
presence of predators, crowding or other environmental stresses
brought a shift in the population from animals with nowings to winged
animals. This adaptive switch took place at early stages of development,
through unknown epigenetic mechanisms (Feil and Fraga, 2011). Fur-
ther investigation of the gene for juvenile hormone (JH) binding protein
revealed one CpG site was significantly hypermethylated in winged an-
imals compared to the wingless asexual females (Walsh et al., 2010).
Similarly, in Daphnia (water flea) species, external stressors, such as
water-borne chemicals or predators instigated dramatic morphological
changes. In this case, Daphnia arms itself with long pointy helmets, tail
spikes and neck teeth, on exposure to the predators during develop-
ment and these acquired phenotypes persisted over several generations
in the population (Agrawal et al., 1999; Harris et al., 2012). These mod-
ifications changed the size of the animals two times bigger than the
original onewhichmakes it impossible for certain predators to consume
themas a prey (Lloyd et al., 2012). Helmet growth and neck teeth devel-
opment in Daphnia can be induced epigenetically by the animals expo-
sure to kairomones (i.e. an aquatic chemicals released by predators) at
their early life stages (Harris et al., 2012).

5.4. Nutrition and epigenetic inheritance

The nutritional status of an organism, particularly during the early
stages of development, plays a critical role in regulating the epigenome,
and eventually in modulating the growth and health of an organism
both within and across generations. Numerous studies have shown
strong associations between phenotypic traits (e.g. health, develop-
ment, sex ratio etc.) and nutritional status of an individual in the pre-
or periconception period. A classical example for the role of nutrition
on transgenerational epigenetic inheritance is theDutchHungerWinter
(1944–1945). It was reported that the male individuals whose mothers
were exposed to famine during the last trimester of pregnancywere less
obese,whereas exposure in thefirst half of pregnancy resulted in higher
obesity rates (Heijmans et al., 2008). The authors showed that individ-
uals who experienced famine at the prenatal stage during the Dutch
Hunger Winter exhibited decreased DNA methylation on their
imprinted (phenomenon in which a gene's epigenetic state is deter-
mined by its parental origin) IGF2 gene, six decades after the incidence,
compared to the non-exposed ones from the same sex siblings. Interest-
ingly, examination of the F2 generation showed higher weights and
body mass index (BMI) in adult offspring of prenatally exposed F1 fa-
thers compared to the offspring of unexposed ones (Veenendaal et al.,
2013). However, this effect was sex-specific and the offspring of prena-
tally exposed mothers did not exhibit these phenotypes. In a more re-
cent study, Tobi et al. (2018) provided new insights into the
transgenerational epigenetic effects of Dutch hunger. The authors eval-
uated whether DNA methylation (whole blood) mediated the associa-
tion between prenatal famine exposure and metabolic health in 422
individuals exposed to famine in utero compared to the 463 (sibling)
controls. The authors also found that the DNA methylation on key
genes, such as PIM3 (a gene involved in energy metabolism and affects
individuals BMI), TXNIP (influencingβ cell function) andABCG1 (affect-
ing lipid metabolism) together mediated 80% of the association be-
tween famine exposure and serum triglycerides. DNA methylation
was associated with gene expression in an external data set and corre-
lated with DNA methylation levels in fat depots in additional postmor-
tem data (Tobi et al., 2018).

Another relevant example for the role of nutrition in development of
phenotypes was reported by Huck et al. (1987) in female golden ham-
sters (Mesocricetus auratus). In this animal, early food deprivation has
shown to cause sex ratios shifts of their first descendants with lower
numbers of males popping up in the population as compared with the
normal fed controls. Apart from sex ratio, there were no (typically)
greater weight male pups in the food restricted population relative to
their females at birth compared to the control group. However, in
later developmental stages, the weight of the restricted animals, both
male and females was significantly lower than that of the controls. In-
terestingly, these modifications persisted for 2 generations.

In the honey bees (Apis mellifora) for instance, female bees can be
sterile workers or fertile queens. Both the females are developed from
genetically identical larvae but only the ones fedwith royal jelly develop
into queens. The underlying mechanisms behind such transformation
are unclear yet. However, de novo methyltransferase DNMT3 was sug-
gested to cause differential DNA methylation and the differential ex-
pression of many genes between queen and worker larvae (Lyko et al.,
2010). Spannhoff et al. (2011) showed that royal jelly contains a fatty
acid, (E)-10-hydroxy-2-decenoic acid (10 HDA) that inhibits the his-
tone deacetylation. This fatty acid accounts for up to 5% of royal jelly
and has the ability to reactivate the expression of epigenetically silenced
genes in mammalian cells (Spannhoff et al., 2011). In another study in
the Drosophila model of paternal-diet-induced intergenerational meta-
bolic reprogramming, it was revealed that an acute sugar dietary inter-
vention in fathers elicited obesity in the F1 progeny via the male
germline. Using identical or comparable position-effect variegation
lines, the authors further revealed that this intergenerational
reprogramming in response to dietarymanipulationmodified the chro-
matin state and transcription in offspring in a manner sensitive to the
functions of Polycomb, enhancer of zeste [E(z), a histone H3K27 meth-
yltransferase], SetDB1 (a H3K9 histone methyltransferase), Su(var)3-9
(a H3K9 histone methyltransferase), and heterochromatin protein 1
(HP1). Numerous genes vital to both cytosolic and mitochondrial me-
tabolism appeared to be embedded into H3K9me3- and polycomb-
controlled regions. Chromatin-dependent transcriptional depression in
the sperm of high-sugar-fed males was also observed, suggesting that
chromatin-dependent signatures of metabolic reprogramming are fore-
cast in the paternal germline (Öst et al., 2014).
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Also there are studies demonstrating the roles of micro nutrients in
the development and transgenerational inheritance of phenotypes in
Gambian women (Dominguez-salas et al., 2014). In another example
of nutritional effects on multigenerational epigenetic inheritance of ac-
quired traits, Benyshek et al. (2006) demonstrated on a ratmodel (non-
inbred lines) that impaired glucose metabolism in F1 rats exposed to a
nutritional stress during gestation period persisted through maternal
transmission to the F3 generation. However, this study did not provided
evidence for the identification of epigenetic mechanisms underlying
these phenotypes and requires further investigation. Considering that
feeding/nutrition is a rather common phenomenon for animals over
evolutionary timescales, knowing the underlying mechanisms thus
carries profound implications for our understanding of phenotypic di-
versity and evolution.

5.5. Environmental biotic cues and epigenetic inheritance

Host-pathogen interactions are amongst the highly plastic, dynamic
and competitive system interactions (Gómez-Díaz et al., 2012). In an
environment, apart from abiotic variants, living organisms are
surrounded by different species of micro-organisms including patho-
genic bacteria and viruses, and they have a significant evolutionary im-
pact on the hostfitness and life history. Upon a pathogen attack, healthy
cells of the host impose selective constrains to restrict or eliminate the
threats. Therefore, many pathogens evolved developing an extreme
level of phenotypic plasticity in order to cope with the pressures im-
posed by the host (Fernández-Morera et al., 2010; Moore, 2002). In
the sameway, the host phenotype is drasticallymodified (positive/neg-
ative) by the presence of a pathogen. In some cases these acquired phe-
notypes can be even inherited by subsequent generations
(Norouzitallab et al., 2015, 2016; Poulin and Thomas, 2008). A good ex-
ample of such adaptation was reported by Adamo (1998) in crickets
(Acheta domesticus) exposed to pathogenic bacteria (Serratia
marcescens) or to parasitic larvae of the parasitoid fly (Ormia ochracea).
The authors showed that the females which were injected with either
pathogenic bacteria or the cell wall from the same bacteria exhibited
high productivity in terms of numbers of laid eggs. This phenotype
was not observed in the animals challenged with the parasite. Similar
phenotype was observed in an invertebrate model Artemia challenged
at early life stages with pathogenic bacteria Vibrio campbellii
(Norouzitallab et al., 2016). Additionally, it was also observed that the
F1–F3 progenies whose ancestors were exposed at early stages to
V. campbellii exhibited a significantly resistant phenotype compared to
the respective progeny of control Artemia that did not experience
V. campbellii exposure at their early stage (Norouzitallab et al., 2015,
2016). Interestingly, the increased resistance phenotype was associated
with elevated levels of heat shock protein hsp70 and high mobility
group box 1 protein hmgb1 signalingmolecules and alteration in the ex-
pression of key innate immunity-related genes. Additionally, there was
a stochastic pattern in the acetylation and methylation levels of H4 and
H3K4me3 histones, respectively, in the progenieswhose ancestorswere
challenged. Overall results from this study suggested that epigenetic
reprogramming of (selected) innate immune effectors in response to
exposure to biotic stress at early stage is likely to play key role in the
mechanisms leading to increased resistance phenotype. The swift mod-
ifications accruing during the host-pathogen interactions and co-
evolution leave no doubt about interference of epigenetic modifications
in this entire process (Gómez-Díaz et al., 2012). It is because the induc-
tion of splice variants results in additional phenotypes the host can use
in its arms race against pathogens (Decaestecker et al., 2013).

6. Conclusions

In the light of the state of the art outlined above, it appears that ge-
nomic information does not fully account for all the phenotypic varia-
tions in organisms, and that the phenotype of an organism may result
from the interplay between the genome and the epigenome, which it-
self depends on the environmental conditions the organismexperiences
during its development and adult life. Environmentally-induced epige-
netic variations therefore appears to play critical roles in defining indi-
vidual variations and phenotypic outcomes not only within generation
but also across successive generations (Norouzitallab et al., 2014,
2015, 2016; Stadlbauer, 2017; Veilleux et al., 2015). It has taken a long
time to fully accept the notion that ‘phenotypic complexity is not just
a simple matter of Mendelian genetics’ but possibly that of the interac-
tion between genetics and epigenetics (Deans and Maggert, 2015). Fu-
ture research should focus on expediting fundamental research on
how epigenetic events interact with genotype, possibly to influence
the induction of phenotypic traits under different conditions, and use
this fundamental information for applications in human and animal
health care, farmed food production, and in understanding biological
adaption and evolution.
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