The Transformative Power of Trees: Landscape Restoration for Carbon and Water

Team: Aida Bargués-Tobella, Jules Bayala, Niles J. Hasselquist, Ulrik Ilstedt, Hjalmar Laudon, Anders Malmer, Gert Nyberg, Hugues Romeo Bazié, Josias Sanoui, Douglas Shiel, Tor Vågen, Leigh Ann Winowiecki

> Ulrik Ilstedt and Aida Bargués Tobella Trees4Life lab Dept. of Forest Ecology and Management

CONFLICTING VIEWS ON FORESTS AND WATER

(illustration: Aida Bargués - Tobella)

"REDD ...contribute towards gradual restoration and sustainance of water flows...averting the looming water stress in East Africa."

Kimbowa et al. 2011. REDD Net

Trading Water for Carbon with Biological Carbon Sequestration Robert B. Jackson, *et al. Science* **310**, 1944 (2005);

506 afforestation observations 'globally'

- Annual stream flow decrease 33-44%
- Proportionally worse at dry sites
- Larger reductions in dry season

Watershed studies

(Bosch and Hewlett 1982)

FAO Forestry Paper 155

"...there is no question that even partial forest removal increases downstream water yields." (Hamilton 2008)

"Forests reduce dry-season flows...

...as much as or more than they reduce annual water yields. "

Calder et al 2007 (http://www.fao.org/docrep/010/a1598e/a1598e02.htm)

It is <u>theoretically possible</u> that in <u>degraded agricultural</u> catchments the extra infiltration associated with afforested land might outweigh the extra evaporation loss from forests...

...**increased** rather than reduced **dry-season flows**

- but this has rarely been seen."

Calder et al 2007 (http://www.fao.org/docrep/010/a1598e/a1598e02.htm)

506 observations BUT...

- Only 3 locations in the tropics
- None in the dryer tropics (<1000 mm/yr)
- Eucalyptus or Pine plantations
- None on degraded sites

Closed vs. open forest - Africa

Soil infiltration capacity Burkina

Transpiration and interception

Soil evaporation

Surface runoff

Small gap Under trees Large gap

GROUNDWATER RECHARGE

The agroforestry parklands of Saponé, Burkina Faso

Measurements - agroforestry parkland

0

Sap flow Soil pit (lysimeters)

Passive fiberglass wick lysimeter

Soil pit with lysimeters

Sap flow measurements - HRM

SOIL WATER DRAINAGE AT 1.5 m DEPTH

1 tree ha⁻¹ ; 25 mm

5 tree ha⁻¹ ; 53 mm

10 tree ha⁻¹ ; 66 mm

20 tree ha⁻¹ ; 76 mm

40 tree ha⁻¹ ; 79 mm

60 tree ha⁻¹ ; 74 mm

Intermediate tree cover can maximize groundwater recharge

THE POWER OF TREES EXTENDS BEYOND THE CANOPY EDGE

Degree of preferential flow

Vitellaria paradoxa (Shea tree) roots

Implications for climate change: At high rain intensity x13 recharge in small gaps

(Bargués-Tobella, 2019)

Effect of trees on water across tropical drylands

Linking tree cover, land use and biodiversity with water

The Land Degradation Surveillance Framework

Infiltration capacity (mm h⁻¹)

Managing trees for water

Pruning Groundwater recharge More small gaps Species with low water use Livestock control Old trees Soil conservation Tree canopy cover

