

Identifying finger millet lines as a potential crop for acidic soils

Haftom Brhane Mesfin

*My Supervisors/Project leaders

- Teklehaimanot Haileselassie (PhD)
- Kassahun Tesfaye (PhD)
- Cecilia Hammenhag (PhD)
- Rodomiro Ortiz (Prof.)
- Mulatu Geleta (PhD)

5/9/2023 Alnarp, Sweden

Morphological description

Fig 1. Finger millet

- 170 cm in height
- Shallow root system
- Curved, open and semi-curved
- Self-pollinated (~95%)

Economic importance

(Shobana et al., 2013)

[Ev. kompletterande text, t.ex. befattningshavare] SLU ID: SLU.[Skriv numret här]

(USDA, 2016)

Mini symposium dedicated to millets breeding and agro-ecology

PLANERING

2023-04-27

Yield and productivity constraints

- Blast
- Soil acidity
- Salinity
- Lodging
- Drought
- Poor attitude to the crop
- Little research emphasis

Distribution of acidic soil in Ethiopia

Fig 5. Distribution of acidic soil

Causes of acidic soil

Management practices

Crop residues on the farm

Organic fertilizer

Developing Al-tolerant cultivar --- Solution

Objectives

- To evaluate diverse finger millet accessions against Al-toxicity under hydroponic
- To evaluate genetic diversity of finger millet landraces using GBS-derived SNP markers
- To identify genomic regions through GWAS
- To perform transcriptomic analysis and marker development of finger millet genotypes using RNA sequencing

1. Hydroponic optimization and screening of Al-tolerance on finger millet (*Eleusine coracana* (L.) Gaertn.) accessions and cultivars

https://doi.org/10.3390/agronomy13061596

Fig 6. Hydroponic setup

Plant materials = 400 accessions Different Al conc. Treatment/control RL/SL measured after 10 days

Results

Fig 7. Root length (cm) of accessions and cultivars grown under different Al-conc

Fig 8. Shoot length (cm) of accessions and cultivars grown under d/t Al-conc

Table 1. ANOVA of the accessions and cultivars grown at d/t Al-con

		MS	
Source	DFZ	Root length	shoot length
Concentration	2	8.5***	0.003ns
Residuals	87	0.08	0.04
Environmental variance	2.00	42.03**	0.02ns
Replication variance	12.00	0.15**	0.04ns
Genotypic variance	29.00	0.37**	0.18**
Genotypic X Environment	58.00	0.46**	0.26**
Residuals	348.0	0.05	0.10

→→288 samples ... Selected for further analysis

2. Novel GBS based SNP markers for finger millet and their use in genetic diversity analyses (https://doi.org/10.3389/fgene.2022.848627)

Fig 9. Genetic diversity of the markers

Fig 10. PCoA depicting genetic relationship of accessions

Fig 11. Genetic structure of 288 accessions

3. Genome-wide association analysis identifies genomic regions and candidate genes governing aluminum tolerance traits

Fig 12. Manhattan's and quantile-quantile plots produced from GWAS analysis in **a**) days to heading, **b**) ear length, and **c**) grain yield traits

Fig 13. Manhattan's and quantile-quantile plots produced from GWAS analysis in **a**) number of effective tillers, **b**) number of fingers, and **c**) plant height traits

4. Finger millet RNA-seq reveals differential gene expression associated with tolerance to aluminum toxicity and provides novel genomic resources

(https://doi.org/10.3389/fpls.2022.1068383)

AT1 = Ec-215836, AT2 = Ec-

215845, and **AT3** = Ec-229722

AS1 = Ec-212462, AS2 = Ec-215804,

and **AS3** = Ec-238323

Differentially expressed genes

Fig 16. Selected sign. DEGs that have association with Al-tolerance

Summary

□We have:-

- Identified tolerance level of finger millet against Al-toxicity (100 uM)
- Estimated the level of GD (high in Pop-1 and low in Pop-4)
- Identified genomic regions, DEGs, TFs
- Developed markers (SSR and SNP)
- Selected Al-tolerant and sucseptible accessions
- Uploaded genomic and transcriptomic data to NCBI to enrich finger millet database

$\rightarrow \rightarrow \rightarrow$ input for breeders

Funded

SWEDISH INTERNATIONAL DEVELOPMENT COOPERATION AGENCY

Thank you for listening!!!

