Confocal microscopy course

7 HEC!

Alyona Minina

Organism Biology School

Uppsala BioCenter

2014

$c = 3 \times 10^8 \text{ m/s}$

299,792,458 m/s

7.5 times around the equator in 1 second

8 minutes and 20 seconds to get from sun to Earth

What do you want to know?

Basics

what are all these buttons I'm pushing z-stack mysterious stuff in the confocal, which tends to brake Softwares Potential of confocal microscopy More new types of microscopy Leica SP8 Zeiss 510 how to make good images how to believe what I see

sample preparation

score in amount of questions

6:6

Mohammad Reza Shirin

Jose Calarina Rila Results of the quiz for the lecture 1 (basics in light microscopy)

1. Comments about the lecture

it was ok/good too fast at the end 83% 17%

2. Average level of boredom (scale 0-10)

1!

3. Will the information from the lecture be useful for you

yes	maybe/some	of	iĿ
75%	25%		

Results of the quiz for the lecture 1 (basics in light microscopy)

4. what would you teach differently

practical examples for the basics Literature before the lecture less time for diffraction and light behaviour > pre-make the drawings for examples > not everyone learns from drawing, videos and text in the presentation!

please be careful! origin of phantom knowledge

5. would you like to be your student

yes	maybe	no!
72%	18%	10%

6. Additional questions

do you regret drinking so much coffee during the break with no perspective of having another break? more/less info in the lecture

CLSM

Confocal Laser Scanning Microscopy

Confocal microscope anatomy

Zeiss 780

Leica SP8

Zeiss 510

Zeiss 780

= a regular epifluorescent microscope with confocal part mounted on it

Inverted epifluorescent microscope

Upright epifluorescent microscope

1. please draw a path for transmitted light

2. please draw a path for excitation/emission light

3. why doesn't transmitted light mix up with excitation/ emission light?

4. how is excitation/emission light directed inside the microscope? 1. what light does the UV lamp emit?

2. what will happened when it passes throughout the filter?

3. what happens to it on the dichromatic mirror? where will it go next?

4. where does the emission light go?

5. what happens to it on the mirror?

6. what is the emission filter for?

7. what part of the sample will be actually illuminated?

8. what part of the sample will be visualised on a CCD camera?

we use ZEN 2011 software

"Locate" tab allows you to use ONLY the epifluorescent microscope.

it is handy to find and focus on the place you want to image with confocal

Zeiss 780

and it all starts here

this is where magic happens

A confocal microscope

Light source

Light amplification by stimulated emission of radiation L oscillation s c

lasers contain "gain" medium (can be gas, liquid, solid body, plasma)

this process is called "pumping"

atoms of the "gain" medium are excited by another light source or electric field

some atoms of the gain medium can spontaneously relax and emit a photon

if this photon bumps into another excited atom another atom will relax and emit identical photon now there are two photons to bump into excited atoms!

Lasers

the gain medium is trapped between to mirrors which will reflect the photons onto excited atoms

the amount of the excited atoms in the "gain" medium is maintained by a light source or electric field

THE LASER

All the animations and explanations on www.toutestquantique.fr

Lasers

please discuss, what could it mean, that laser medium emits identical photons

light is of the same wavelength

light is of the same phase coherent

coherency => collimated light

A confocal microscope

Optical fiber

Optical fiber

Insides of our confocal

spectral dispersion using diffraction grit adjustable prisms targeting light to the detectors detectors

1. what is a difference between light emitted by a laser and light emitted by a UV lamp?

2. does it need an excitation filter?

3. what happens to it on the dichromatic mirror? where will it go next?

4. where does the emission light go?

6. is there an emission filter in the confocal?

7. what part of the sample will be actually illuminated?

8. what part of the sample will be visualised on the detector?

Leica has alternative solutions

Light path

Light path

0

Light path

Light	path
4. /	

Detector = PMT Photomultiplier tube

http://micro.magnet.fsu.edu/primer/java/digitalimaging/photomultiplier/sideonpmt/index.html

💬 22N 2011

not defined

Z-Stack

Bleaching Tile Scan Positions Regions

V Laser

The Focus

Stage

Incubator

Auto Save

E Light Path

🔹 🖚 Acquisition Mode

 ★ Smart Setup

AF O

Find Focus Set Exposure

N 🕞 🖩 🍰

~

Acquisition

Photomultiplier tube = PMT

please discuss what exactly does the PMT detect:

- amount of photons?frequency?
- wavelength?
- energy?

please sum up how does the information you get from a PMT detector differ from what you get with a usual CCD microscope camera?

The crown jewel of a confocal

CLSM

why is confocal called confocal?

confocal = to have the same foci

1957 patent by Marvin Minsky

ATTORNEYS

The size of the pinhole

For the best signal to noise ratio pinhole should match the Airy disk diameter

File	View	Acq	uisition	Maintain	Macro	Tools	Window	Help
٦	۲		\$					
ā				- 201	*		۶I	
		Acq	sisition	FCS				
	iment N							
not d	letined						¥ 14	•
* 5	mart S	etup			🖌 Sho	w all Tools	New	-
	r		^	-	_	-	0	
Find	Focus	Set	besosure	Live	6	ntinuous	Snap	
-								
🗆 Z-S	tack							
III Tin	ne Serie	8						
Ble	aching							
	Scan							
E Res	sions							
	tup M	anag						
0.9	Laser						2	
E	Light	Path				√ 9	eval 🕑	
		ion P						
	Acqui		Mode			- 5h	oval M	
A 0	annels			_	_		×	
0.2	Focus						owal (M	
	Stage					0.55	owal (a)	5
1 In	cubato	r					19	
-			_	_		_	_	1
= M	ultidin		ional Act					
- i	Inform	nation	i On Expe	riment			12	
	Auto	Save				0.54	owal 🕼	
								2

🕞 22N 2011

Track	6	Channels	
21	rack 1	DAPI	
		EGIP	
		EYFP	
2	. • i	milit P Selec	t All Unselect All
	nfiguration	at defined	क स व
	L - LSM		
	w = 1		
	405 458 41	88 514 561 633	
	5 nm ——	,	2.0 :
	8 nm		2.0 2
			2.0 :
A 56			2.0 :
			- 900 : 4-
3.38	Airy Units = 4		TAU mas
			K
	Gain (Maste	0 -1	
	Digital Offse		
		1	
		Integration	Photon Counting
		0 1	613 7
	Digital Offse		-1
			10
		Integration	Photon Counting
		r) — () — — — — — — — — — — — — — — — — —	613 2
			-t <u>o </u> =
		1	1.0 2
		Integration	Photon Counting
		a) _8	188 :
	Digital Office		1 0 3
	Divital Cala	1	
	ogur dan		<u>10</u> .

pinhole size defines thickness of an optical section

The size of an Airy disk

$r(Airy) = 0.61 \lambda / NA$

please discuss:
what is an Airy disk
what defines it's size
why is it good to have the pinhole of the matching diameter?

The size of the pinhole

please discuss:

•what would happen if you set pinhole smaller than 1 AU?

owhat would happen if you set pinhole size larger than 1AU?

×	🗢 Acquisition Mode	

F	-	Channels	Show all	
Þ	*	Focus	Show all	
)	۲	Stage	Show all	
Þ	Inc	ubator		

🗆 Show all 🔛

```
    Multidimensional Acquisition
```

		Stack		
	i	Information On Experiment		
)	в	Auto Save	C Show all	

Z-stacks

E Z-Stack	🗸 Show all	2
First/Last	Center	
	Set Last 9.99	_
0	Range 20.00 μm	
	Slices 21	
	Interval 1.00	
	Optimal 15.27 µm	
	Keep 🔹 Interval 🔍 Slice	
-14.3	Set First	
Position (µm) 0.00	-1001	
Optimize Sectioning and S Cb1	tep	
30.5 µm		
Match Pinhole Optimal	Undo X:Y:Z = 1	
 Correction 		
Refractive Index Correction	1.00	
Auto Z Brightness Correction		
Use Correction		
Add Position	Load Save	
Remove 0.00 µm	n ✓ Spline interpolation	
Remove all	Extrapolate	
Move to	Enable Test	

Acquisition mode

speed of scanning

bi-directional scanning is twice faster

you can rotate area of scanning, zoom in and out

.

CLSM

Confocal Laser Scanning Microscopy

