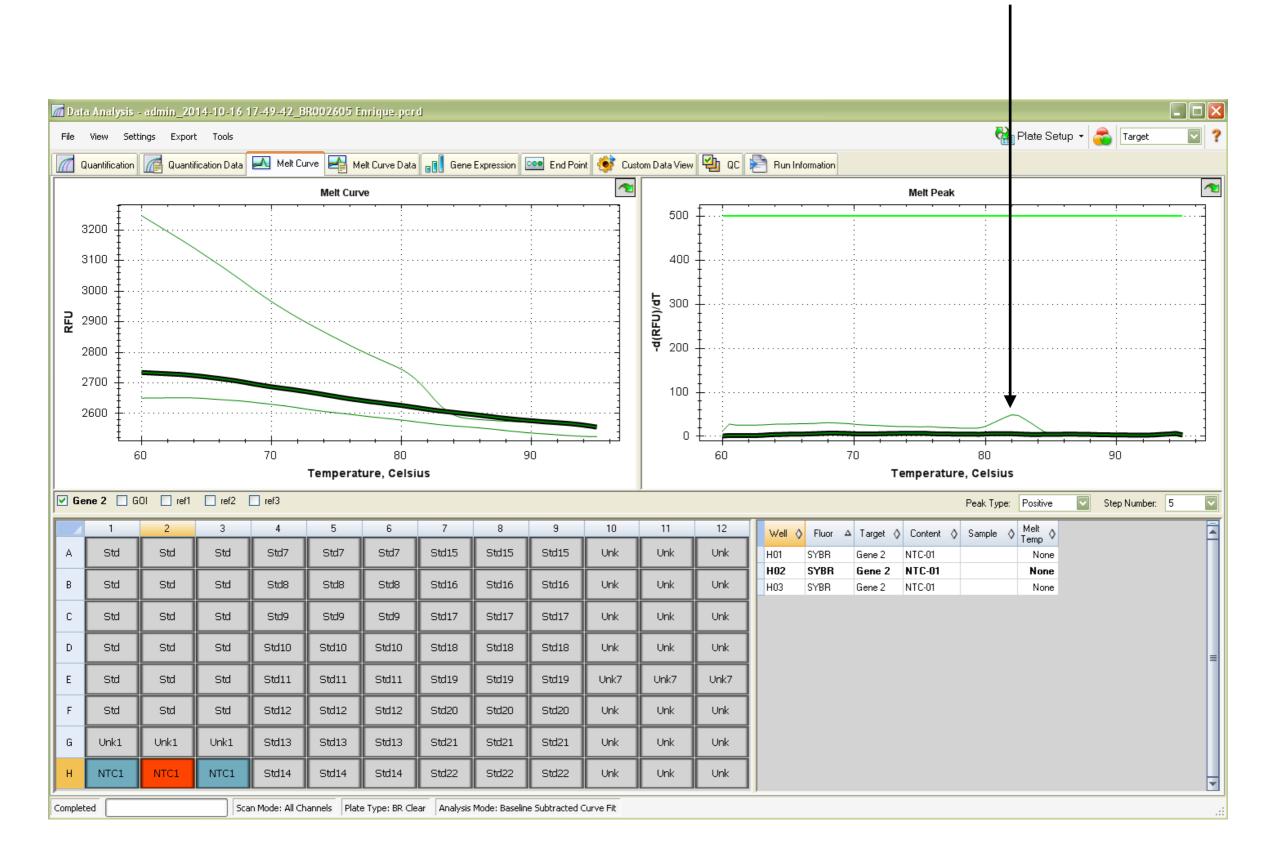

# qPCR data analysis

#### 1. Check the melt curve

- if reactions with the same primer pair give only one peak -> proceed with the analysis
- if you see more than one peak, consider how high is the additional peak(s), will it contribute a lot to the fluorescence in the reaction:
  - if it is very low -> proceed with the analysis
  - if it is not low -> what conclusions can you make from its melting temperature:
    - is it a primer dimer? -> change annealing T, adjust concentration of primers, redesign primers
    - is it an additional product? -> increase annealing T, get rid of genomic DNA contamination, redesign the primers


#### primer-dimer peak of a neglectable height

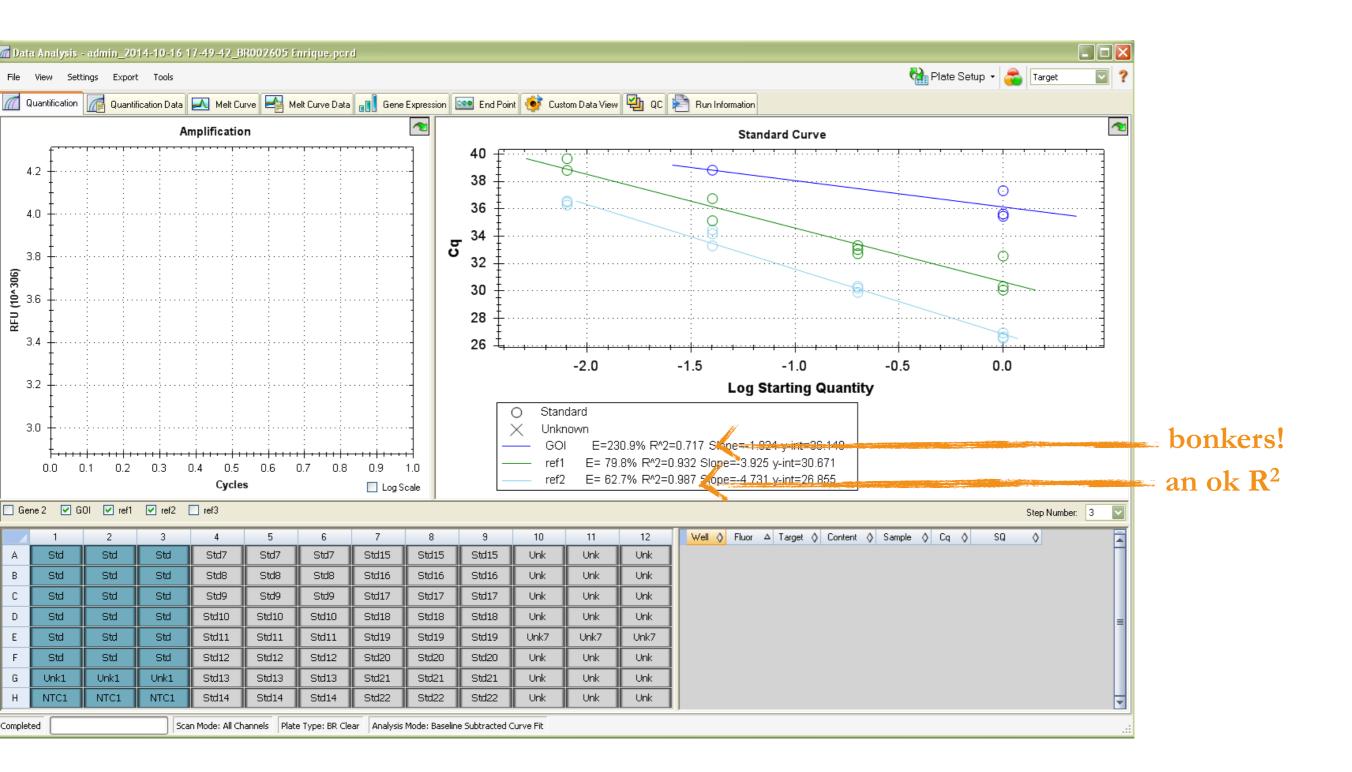


## 2. Check no template control

- if you see amplification in NTC, check what is the level of fluorescence intensity in NTC samples-> go to melt curve and compare the hight of peak in NTC and in your sample:
  - if NTC reactions show a melt curve peak with very low height-> ignore it and proceed with analysis
  - if NTC samples have a nice melt curve with of a peak of a considerable height-> there is contamination! change all your dilutions and rerun qPCR, pay attention to not contaminating your reactions while pipetting

not significant contamination in one out of 3 technical replicates -> proceed with analysis, but also take it into consideration while pipetting the next qPCR




## 3. Check Standard Deviation for your mean Ct values

- •if you see StDev 0.1 or higher:
  - •look if one of the technical replicate is a very obvious outliers, remove it and
  - consider the amount of technical replicates in your qPCR = 2
  - •if you can't find obvious outliers try to find where the pipetting error comes
  - from: check you pipettes precision, rethink you strategy for adding
  - components to the wells ->and then rerun qPCR

|         |            |              |                |                |                   |            |                | not                | ok                          | ok              |                 | sic! a software b          |
|---------|------------|--------------|----------------|----------------|-------------------|------------|----------------|--------------------|-----------------------------|-----------------|-----------------|----------------------------|
| Data An | alysis - a | dmin_2014    | -10-16 17-49   | 42_BR00260     | 5 Enrique.pcrd    |            |                |                    |                             |                 |                 |                            |
| e Viev  | v Setting  | s Export     | Tools          |                |                   |            |                |                    |                             |                 |                 | 🚰 Plyte Setup 🗸 🚠 Target 👔 |
|         | v Detting: | _            |                |                |                   |            |                |                    |                             |                 |                 |                            |
| Quanti  | ification  | [ Quantifica | ition Data 🛃 I | Melt Curve 🛛 🛃 | Melt Curve Data 🔋 | Gene Expre | ssion 🚾 End Po | int 🔅 Custom Data  | a View 🎦 🛛 🕻                | Run Information |                 |                            |
| sults   |            | Step N       | lumber: 3      |                |                   |            |                |                    |                             |                 |                 |                            |
|         |            |              |                |                |                   |            |                |                    |                             |                 |                 |                            |
| Well 4  | 🔺 Fluor 🔇  | > Target     | 🛇 Content 🛇    | Sample         | 👌 Cq 👌            | Cq Mean  👌 | Cq Std. Dev  👌 | Carting Quantity 👌 | Log Stating ↓<br>Quantity ♦ | SQ Mean 🛛 🛇     | SQ Std. Dev 🛛 🛇 |                            |
| 07      | SYBR       | GOI          | Std-19         | DNA POOL       | 37.33             | 36.14      | 1.034          | 1.000E+00          | 0.000                       | 1.00E+00        | 0.00E+00        |                            |
| 08      | SYBR       | GOI          | Std-19         | DNA POOL       | 35.46             | 36.14      | 1.034          | 1.000E+00          | 0.000                       | 1.00E+00        | 0.00E+00        |                            |
| 09      | SYBR       | GOI          | Std-19         | DNA POOL       | 35.63             | 36.14      | 1.034          | 1.000E+00          | 0.000                       | 1.00E+00        | 0.00E           |                            |
| 10      | SYBR       | ref1         | Unkn-07        | SAMPLE2        | 34.18             | 33.77      | 0.364          | 1.273E-01 🥖        | -0.895                      | 1.65E-01        | 3,7 2-02        |                            |
| 11      | SYBR       | ref1         | Unkn-07        | SAMPLE2        | 33.50             | 33.77      | 0.364          | 1.903E-01          | -0.720                      | 1.65E-01        | .31E-02         |                            |
| 12      | SYBR       | ref1         | Unkn-07        | SAMPLE2        | 33.63             | 33.77      | 0.364          | 1.760E-            | -0.754                      | 1.65E-01        | 3.31E-02        |                            |
| 01      | SYBR       | Gene 2       | Std            | SAMPLE A       | 25.14             | 25.14      | 0.000          | 1.000 <u>7</u> .05 | -5.000                      | 1.00E-05        | 0.00E+00        |                            |
| 02      | SYBR       | Gene 2       | Std            | SAMPLE A       | 25.01             | 25.01      |                | 1.00 E-05          | -5.000                      | 1.00E-05        | 0.00E+00        |                            |
| -03     | SYBR       | Gene 2       | Std            | SAMPLE A       | 25.06             | 25.06      | 6              | 1.500E-05          | -5.000                      | 1.00E-05        | 0.00E+00        |                            |
| 04      | SYBR       | ref2         | Std-12         | DNA POOL       | 30.33             | 30.14      | 0.218          | 2000E-01           | -0.699                      | 2.00E 1         | 3.40E-17        |                            |
| -05     | SYBR       | ref2         | Std-12         | DNA POOL       | 29.90             | 30.14      | 0.218          | 2.000E-01          | -0.699                      | 2.9 E-01        | 3.40E-17        |                            |
| F06     | SYBR       | ref2         | Std-12         | DNA POOL       | 30.20             | 30.14      | 0.218          | 2.000E-01          | -0.699                      | .00E-01         | 3.40E-17        |                            |
| -07     | SYBR       | GOI          | Std-20         | DNA POOL       | N/A               | 0.00       | 0.000          | 2.000E-01          | -0.699                      | 0.00E+00        | 0.00E+00        |                            |
| F08     | SYBR       | GOI          | Std-20         | DNA POOL       | N/A               | 0.00       | 0.000          | 2.000E-01          | -0.699                      | 0.00E+00        | 0.00E+00        |                            |
| -09     | SYBR       | GOI          | Std-20         | DNA POOL       | N/A               | 0.00       | 0.000          | 2.000E-01          | -0.699                      | 0.00E+00        | 0.00E+00        |                            |
| -10     | SYBR       | ref2         | Unkn           | SAMPLE2        | 30.06             | 30.06      | 0.000          | 2.097E-01          | -0.678                      | 2.10E-01        | 0.00E+00        |                            |
| -11     | SYBR       | ref2         | Unkn           | SAMPLE2        | 30.26             | 30.26      |                | 1.904E-01          | -0,7_0                      | 1.90E-01        | 0.00E+00        |                            |
| 12      | SYBR       | ref2         | Unkn           | SAMPLE2        | 30.17             | 30.17      | 0              | 1.989E-01          | 0.701                       | 1.99E-01        | 0.00E+00        |                            |
| i01     | SYBR       | Gene 2       | Unkn-01        | SAMPLE B       | 9.48              | 9.41       | 0.064          | 3.232E-01          | -0.491                      | 3.40E-01        | 1.49E-02        |                            |
| GO2     | SYBR       | Gene 2       | Unkn-01        | SAMPLE B       | 9.37              | 9.41       | 0.064          | 3.505E-01          | -0.455                      | 3.40E-01        | 1.49E-02        |                            |
| <br>603 | SYBR       | Gene 2       | Unkn-01        | SAMPLE B       | 9.38              | 9.41       | 0.064          | 3.470E-01          | -0.460                      | 3.40E-01        | 1.49E-02        |                            |
| <br>604 | SYBR       | ref2         | Std-13         | DNA POOL       | 33.29             | 33.98      | 0.611          | 4.000E-02          | -1.398                      | 4.00E-02        | 0.00E+00        |                            |
| 305     | SYBR       | ref2         | Std-13         | DNA POOL       | 34.46             | 33.98      | 0.611          | 4.000E-02          | -1.398                      | 4.00E-02        | 0.00E+00        |                            |
| i06     | SYBR       | ref2         | Std-13         | DNA POOL       | 34.18             | 33.98      | 0.611          | 4.0005-02          | -1.398                      | 4.00E-02        | 0.00E+00        |                            |
| GO7     | SYBR       | GOI          | Std-21         | DNA POOL       | 38.83             | 38.83      | 0.000          | 4.000E-02          | -1.398                      | 4.00E-02        | 0.00E+00        |                            |
| G08     | SYBR       | GOI          | Std-21         | DNA POOL       | N/A               | 0.00       | 0.000          | 4.000E-02          | -1.398                      | 0.00E+00        | 0.00E+00        |                            |
| G09     | SYBR       | GOI          | Std-21         | DNA POOL       | N/A               | 0.00       | 0.000          | 4.000E-02          | -1.398                      | 0.00E+00        | 0.00E+00        |                            |
| <br>310 | SYBR       | ref3         | Unkn           | SAMPLE2        | 29.84             | 29.84      | 0.000          | 2.668E-01          | -0.574                      | 2.67E-01        | 0.00E+00        |                            |
| i11     | SYBR       | ref3         | Unkn           | SAMPLE2        | 30.74             | 30.74      | 0.000          | 1.736E-01          | -0.760                      | 1.74E-01        | 0.00E+00        |                            |
| <br>612 | SYBR       | ref3         | Unkn           | SAMPLE2        | 29.67             | 29.67      | 0.000          | 2.896E-01          | -0.538                      | 2.90E-01        | 0.00E+00        |                            |
| 401     | SYBR       | Gene 2       | NTC-01         |                | N/A               | 0.00       | 0.000          | N/A                | N/A                         | 0.00E+00        | 0.00E+00        |                            |
| 102     | SYBR       | Gene 2       | NTC-01         |                | N/A               | 0.00       | 0.000          | N/A                | N/A                         | 0.00E+00        | 0.00E+00        |                            |
| 103     | SYBR       | Gene 2       | NTC-01         |                | N/A               | 0.00       | 0.000          | N/A                | N/A                         | 0.00E+00        | 0.00E+00        |                            |
| 104     | SYBR       | ref2         | Std-14         | DNA POOL       | 36.28             | 36.44      | 0.151          | 8.000E-03          | -2.097                      | 8.00E-03        | 0.00E+00        |                            |
|         |            |              |                | 3              | 00.20             | 50.44      | 0.101          | 0.0002.00          | 2.001                       | 0.002.00        | 0.002.00        |                            |

## 4. Check R<sup>2</sup> of your Standard curve(s)

- if your  $\mathbb{R}^2$  is less than 0.98, do not trust it:
- if the curve look absolutely crazy, check the plate layout and make sure the software has correct data about your targets names, standards names, dilutions factors etc.
- do you get sudden increase in amplification at higher dilutions? ->indicator of an inhibitor present in your template-> optimise your protocol for template purification/if possible use higher dilutions for qPCR
- you do not get increase at higher dilutions, but  $R^2$  is still shitty => the problem is in something else: rethink the way you made your serial dilution, consider how to optimise the pipetting and rerun qPCR

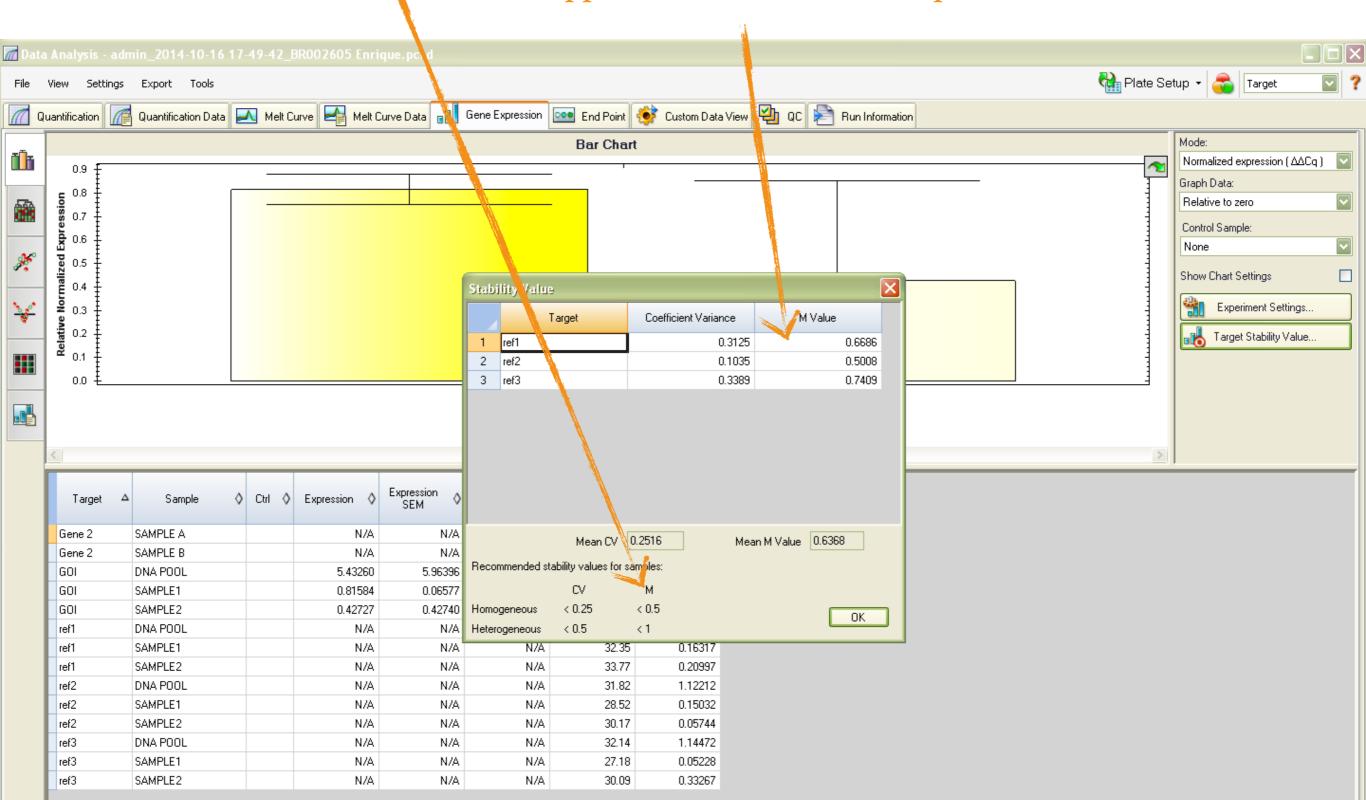


# II. Absolute quantification

#### 1. Absolute quantification will be automatically done for you by the software

• Make sure that concentration of your sample fits into the range of your standard curve, if it doesn't -> rerun with a

different standard curve or make dilutions of your sample


# **III. Relative Gene Expression**

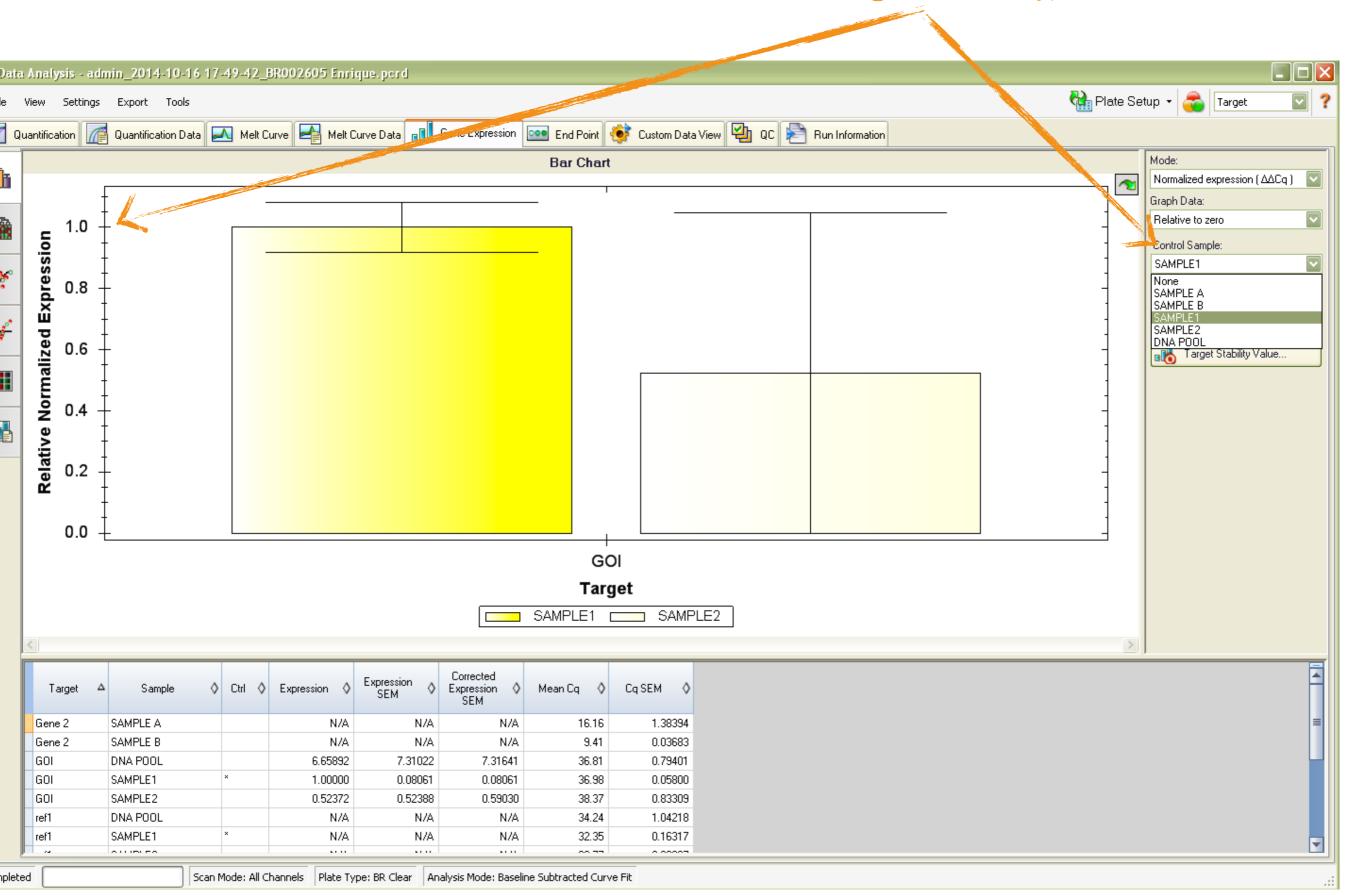
- 1. Before running the  $\Delta\Delta Ct$  test, check the stability of your reference genes
  - for example you can find a target-stability value (M-value) it should be less than 0.5
    if it is not less than 0.5 -> pick other reference genes for your sample and rerun the

experiment

## M-value should be less than 0.5

## => none of these reference genes are applicable for these two samples




# **III. Relative Gene Expression**

## 2. For more obvious comparison between your samples

•you can normalize all values to the control sample (control sample expression value will be set to 1)

•Please note, that the standard errors you see on the chart represent the stability of your pipetting!! and have very little to do with the future statistical analysis of biological replicates

it is easier to see now, that sample 2 has twice lower expression of GOI (in a very statistically insignificant way)

