Results of the quiz

1. Did you learn anything new from the lecture

2. If yes, do you think you will remember it tomorrow?

	yes	yes, after revising it	I hope/some	no	
lecture 1 (PCR)	56%	13%	31%	0	
lecture 2 (qPCR)	20%	47%	26%	7%	the Norst
Seminar 1 (qPCR)	58%	25%	17%	0	

3. Would you prefer to have more information in the lecture, keep it the same, reduce it?

4. Were the tasks too easy, ok, or too hard?

6. was/would be the homework helpful

	Nope	a bit	yes
lecture 1 (PCR)		-	
Lecture 2 (gPCR)	20%	13%	66.7%
Seminar 1 (gPCR)	0	0	100%

8. Would you suggest any changes?

it was a bit too fast/I need more time to think

more group work

homework to repeat stuff from previous lectures

some repetitions are unnecessary

Next Generation Sequencing

Microarray

What is Mole?

What is Mole?

Mole is a unit of measurement

SI from French: Le Système International d'Unités

The seven SI base units: K = Kelvin (temperature) S = second (time) m = metre (length) kg = kilogram (mass) cd = candela (luminous intensity) mol = mole (amount of substance) A = ampere (electric current)

it is used a lot in chemistry/biology

Mole is a unit of measurement

one mole of whatever = 6.022×10^{23} of this whatevers parts

Avogadro constant

= amount of atoms in 12 grams of pure carbon-12 (12C)

why this many?

true chemist nerds celebrate the Mole Day on the October 23d between 6:02 AM and 6:02 PM

sucrose is composed of sucrose molecules one mole of sucrose = 6.022×10^{23} of sucrose molecules

Lets say your primer stock is composed of 20bp long DNA molecules one mole of primer = 6.022×10^{23} of 20bp long DNA molecules

what is molarity?

molarity of whatever = a value telling you how many moles of this whatever you have in a certain volume

mol/L

and what is molality?

molarity = mol/L

why to use molarity of primers and not ng?

Re Fw 18 bp 32 bp =1 ng of Re =1 ng of Fw

mmol umol nmol pmol fmol

	Mol
milli	mMol
micro	uMol
nano	nMol
pico	pMol
fembo	FMOL

10¹ Mol 10⁻³ Mol 10⁻⁶ Mol 10⁻⁹ Mol 10⁻¹² Mol 10⁻¹⁵ Mol

Homework part 1

You have:

- 1. sample A = cDNA made on a blood sample from a patient infected with Ebola virus
- 2. sample B = 200 ng of viral genomic cDNA (it is an RNA virus)
- 3. the length of the viral genomic CDNA is 19 kb.

You made:

- 1. four 10-fold dilutions of the sample B
- 2. ran gPCR with sample A and dilutions of the sample b

Your data are:

dilution	1	Ct=	20
dilution	2	Ct=	23
dilution	3	Ct=	26.8
dilution	4	Ct=	30.4
sample A		Ct=	32.7

Please find out:

Is it possible to estimate the efficiency of primers from these data?
 If yes, what is it in %? (If not, assume it is 100%)
 Amount of viral cDNA in the patients blood
 Is it possible to estimate the amount of viruses in the patient's blood?

Homework part 2

Experiment

You have:

sample A = cDNA isolated from 100 mg of Arabidopsis roots (grown under normal conditions)
 sample B = cDNA isolated from 100 mg of Arabidopsis roots (grown under stress conditions)
 primers to ABA-receptor gene (E=98%), primers to reference gene E2F (E=93%)

You made: 1. ran qPCR with sample A and sample B using both primer sets

```
Your data are:
sample A ABA-receptor gene Ct= 29.4
sample A E2F gene Ct= 27.3
sample B ABA-receptor gene Ct= 25.1
sample B E2F gene Ct= 29.6
```

Please find out how much more/less of the ABA-receptor mRNA there is in the sample A by using: 1. delta Ct 2. Livak method 3. Pfaffl method

Homework part 3

Group 1: Reza Konstantia Enid Martin Mohammed

your topic is

RT with oligodT

Group 3: Anna Maite Enrique Shirin Anders

your topic is RT with random

hexamers

your topic is RT with gene-specific primers

Please answer the questions: 1. what is it? 2. is it applicable for qPCR (if not, what is it for) 3. what are advantages/disadvantages of it

Group 3: Group 2: Group 1: Anna Jun Reza Zaenab Maile Konstantia Jule Enrique Enid Shirin Martin Kiran Anders Mohammed your topic is your topic is your topic is RT with gene-specific RT with random RT with oligodT primers hexamers

> Please discuss your topic within your group (5 minutes) 1. what is it? 2. is it applicable for qPCR (if not, what is it for) 3. what are advantages/disadvantages of it

Group 1: Reza Konstantia Zaenab Jule Enrique Shirin

Group 2: Jun Enid Martin Anders

Group 3: Anna Maite Kiran Mohammed

Please present your topic to the new members of your group (10 minutes)

1. what is it?

2. is it applicable for gPCR (if not, what is it for)

3. what are advantages/disadvantages of it

Group 1: Reza Konstantia Zaenab Jule Enrique Shirin

Group 2: Jun Enid Martin Anders

Group 3: Anna Maite Kiran Mohammed

Please discuss within your group:

(10 minutes)

1. can you combine these three RT-methods, or any two of them 2. what would be advantage/disadvantage of the mixed methods

So would you use any combination of these RT-methods?

Maxima First Strand cDNA Synthesis Kits for RT-gPCR (# K1641)

store at -20°C for up to one week for longer storage use -80°C

Group 1: Reza Konstantia Enid Martin Mohammed Group 2: Jun Zaenab Jule Kiran Group 3: Anna Maite Enrique Shirin Anders

sample 1: 10 ng/ul sample 2: 57 ng/ul sample 1: 31 ng/ul sample 2: 580 ng/ul sample 1: 2000 ng/ul sample 2: 1500 ng/ul

please calculate the composition of RT reaction for RT-9PCR experiment: 1. for sample 1 and sample 2 given to your group 2. for sample 1 and sample 2 the members of your group have

Add on ice in the indicated order:

1. 5X Reaction Mix 4 µL
 2. Maxima Enzyme Mix 2 µL
 3. Template RNA 1 pg - 5 µg
 4. Water, nuclease-free to 20 µL

Maxima First Strand cDNA Synthesis Kits for RT-qPCR (# K1641)

Add on ice in the indicated order: 1. 5X Reaction Mix 4 ML 2. Maxima Enzyme Mix 2 ML 3. Template RNA 1 pg - 5 Mg 4. Water, nuclease-free to 20 ML

what if you have 40 RNA samples to synthesize cDNA?

0	0								🛃 2014. 09.24 qPCR o
	1	25% -				fx I			
Iew		Zoom	T	platos		Function Tabl	le Chart Text S	nape Media	Comment
				piaces		results			
2	P		в	D	E	F	G	н	
1			F	RNA concentraion ng/ul	ul/RT		ul of MQ/RT		
2	1	Col-0	Ĭ	68 -	= 1000÷ D2	• × • ·	= 5- E2 v	× 🗸	
3	2	? qrt1-2		804	1,2	✓	3,8	\checkmark	
6	3	srt1-3		771	1,3	\checkmark	3,7	\checkmark	
7	4	srt2-1		554	1,8	\checkmark	3,2	\checkmark	
8	Ę	srt2-2		203	4,9	\checkmark	0,1	\checkmark	
Ē									
\bigcirc)(Α		В		С	D	E	
1		Enzy	me mix (Th	ermoScientific, Maxin	na RT kit)		Pro	gram	
2		MQ		49,5			25 C	10'	
3		5x buffer	• = 4×5,5			× •	✓ 60 C	40'	
4		Enzyme		11			85 C	5'	
5		15 ul/reaction					4 C	Hold	
ē)								

DyNAmo Flash SYBR Green gPCR Kit (# F-415L,)

experiment Perform the reaction setup in an area separate from nucleic acid preparation and

As the hot-start DNA polymerase is inactive during PCR setup, it is not nece

· Pipette with sterile filter tips

· Minimize the exposure of the gPCR master mix to light.

 Minimize pipetting errors by using calibrated pipettes a small volumes (recommended total V=20-50 ul, also

• Use optically clear caps or sealers to achieve Kil

• Use a cap sealing tool or firm finger close caps properly, or use a film sealer.

manualfor Avoid touching the optical surface cap or sealing film without gloves, as fingerprints may interfere with fluorescence measurement

· Use powder-free gloy

• Use p

· Plates or strips nease read centrifuged before starting the cycling program to force the solution to the bottom of the to remove any bubbles.

cology grade H2O.

t Broke starting aring premixes to avoid pipetting very sensitivity of your qPCR machine).

act analysis

the setup on ice

DyNAmo Flash SYBR Green gPCR Kit (# F-415L,)

Can be mixed at room temperature, minimise exposure to light!

what does it contain?

2X Master Mix
 Fw primer
 Re primer
 Re primer
 Template cDNA
 Water, nuclease-free to

should one ever change it?

10 mL 125 nM 125 nM 5 ul (<100 ng) 20 mL

how to decide how much to add?

the volume can be changed depending on your template concentration. please be aware that adding tiny volumes increases pipetting error!

DyNAmo Flash SYBR Green qPCR Kit (# F-415L,)

Premix = the same pipetting error for all reactions?

	x1 reaction	xN reactions	
1.2X Master Mix	10 mL	?	
2. Fw primer	125 nM	?	which components to
3. Re primer	125 nM	?	premix?
4. Template CDNA	5 ul (<100 ng)	?	
5. Water, nuclease-free to	20 Jul	?	

can one pre-premix primers?

what would be the molarity of your primer stock?

٩	eurofins	Genomics		C	Oligo	onucleot	ide Syr	nthe	sis R	eport				Page 1/8	3
Dr. A Upps	lyona Minina ala BioCenter, S	LU	O C Y	rder ID ustomo our Oro	er ID: der ID (I	340498 943162 P O#): 480MT	11 2 R		C L N	Drder Date .ab No.: Io. of Oligo	: 07.10. 2537 os: 84/84	.2014		Eurofins Genor Anzingerstraße D- 85560 Ebers	nics ⊱7a sberg
No.	Oligo Name	Sequence (5' -> 3')	Yield [OD]	Yield [µg]	Yield [nmol]	Concentration [pmol/µl]	Vol. for 100pmol/µl	Tm [°C]	MW [g/mol]	GC- Content	Synthesis Scale	Purification	Modification	Barcode IDO	QC Report
1	SA_DAL19_F	CGGTTTTGACATCACCTG (18)	4.2	124	22.6	-	226	53.7	5465	50 %	0.01 µmol	HPSF	-	018656743	-
2	SA_DAL19_R	CGATAGGAAGGGGATCT TATAC (22)	6.2	164	24.0	-	240	58.4	6823	45.5 %	0.01 µmol	HPSF	-	018656744	-
3	SA_Polyubq_ F	TGGTCGTACTCTGGCCG ATTATA (23)	7.2	209	29.6	-	296	60.6	7045	47.8 %	0.01 µmol	HPSF	-	018656745	-
4	SA_Polyubq_ R	ACACCTAGCGGCACACA GTTAA (22)	7.3	195	29.2	-	292	60.3	6697	50 %	0.01 µmol	HPSF	-	018656746	-
5	SA_Actin_F	ATTGGGATGGAAGCTGC TG (19)	2.5	68	11.6	-	116	56.7	5923	52.6 %	0.01 µmol	HPSF	-	018656747	-
6	SA_Actin_R	CCCACCACTAAGCACAAT G (19)	3.5	95	16.7	-	167	56.7	5710	52.6 %	0.01 µmol	HPSF	-	0 1 8 6 5 6 7 4 8	-
7	SA_His2A_F	GGCTAAGCGAAACGATC AAC (20)	5.1	132	21.5	-	215	57.3	6144	50 %	0.01 µmol	HPSF	-	018656749	-
8	SA_His2A_	GATCTGGGCCAAATTTCT GA (20)	5.9	164	26.7	-	267	55.3	6132	45 %	0.01 µmol	HPSF	-	0 1 8 6 5 6 7 5 0	-
9	AJ_IL-17_Plus	CTGAGAACTTCATCCGTG TC (20)	5.3	154	25.4	-	254	57.3	6067	50 %	0.01 µmol	HPSF	-	018656751	-

DyNAmo Flash SYBR Green gPCR Kit (# F-415L,)

Now use your primer stock concentration and please write down how many microliters of each component you would add to a premix for 7 samples

sic!! ALWAYS make premix for 0.5-2 more reaction than you are going to use

x? reactions

why?

	x1 reaction
1. 2X Master Mix	10 mL
2. Fw primer	125 nM
3. Re primer	125 nM
4. Template CDNA	5 mL
5. Water, nuclease-free to	20 mL

qPCR

2 experiments on one plate

Absolute

how much of GOI is in your sample

Relative

which of your samples has more of GOI

Absolute aPCR

sample A: 50 ul of plasmid, concentration 10 ng/ul

sample B: the same plasmid, concentration is unknown

what is the concentration?

Technical triplicates for each PCR reaction

Dilution series of the sample with known concentration for the Standard curve

sample with unknown concentration

NTC= no template control= water control for contamination of PCR

	Standard 1
	Standard 2
C	Standard 3
E	Standard 4
E	Standard 5
C	Standard 6
	Sample B
C	NTC

Absolute gPCR

sample A: 50 ul of plasmid, concentration 10 ng/ul

sample B: the same plasmid, concentration is unknown Fw and Re primers to detect a gene on the plasmid

1. Please calculate the amount of reactions for this experiment

2. Use sample A to make 6 serial 10 fold dilutions. Please calculate the volume of dilutions you are going to make, and how you are going to mix them

3. Please calculate amount of components for the premix you will use for the absolute qPCR

	~+
1. 2X Master Mix	1
2. Fw primer	1
3. Re primer	1
4. Template CDNA	;
5. Water, nuclease-free to	

x1 reaction 10 mL 125 nM 125 nM 5 mL 20 mL

NTC= no template control= water

sample B

Technical triplicates for each PCR

Relative gPCR

sample 1: cDNA of your choice sample 2: another cDNA of your choice one pair of primers to detect GOI 3 pairs of primers to detect 3 reference genes

which of your samples has more of the GOI?

Dilution series of the cDNA pool to estimate primer efficiency

Technical triplicates for each PCR reaction

	1			
Standard 1	Ref1 St 1	Ref3 St 1	Ref1 Sample 1	
Standard 2	Ref1 St 2	Ref3 St 2	Ref2 Sample 1	detection of all four
Standard 3	Ref1 St 3	Ref3 St 3	Ref3 Sample 1	genes in the sample 1
Standard 4	Ref1 St 4	Ref3 St 4	GOI Sample 1	
Standard 5	Ref2 St 1	GOI St 1	Ref1 Sample 2	
Standard 6	Ref2 St 2	GOI St 2	Ref2 Sample 2	detection of all four
Sample B	Ref2 St 3	GOI St 3	Ref3 Sample 2	genes in the sample 2
NTC	Ref2 St 4	GOI St 4	GOI Sample 2	

Relative gPCR

sample 1: cDNA of your choice sample 2: another cDNA of your choice one pair of primers to detect GOI 3 pairs of primer<u>s</u> to detect 3 reference genes

1. Please calculate the amount of reactions for each primer pair

x1 reaction

2. Please calculate the volume cDNA pool and its dilutions you are going to make, and how you are going to mix them

3. Please calculate amount of components for the premixes you will use for the absolute qPCR

1. 2X Master Mix	10 mL
2. Fw primer	125 nM
3. Re primer	125 NA
4. Template CDNA	5 mL
5. Water, nuclease-free to	20 mL

Ref1 Sample 1 Ref3 St 1 Ref1 St 1 Ref1 St 2 Ref3 St 2 Ref2 Sample 1 Ref1 St 3 Ref3 Sample 1 Ref3 St 3 Ref1 St 4 Ref3 St 4 GOI Sample 1 Ref2 St 1 Ref1 Sample 2 GOI St 1 Ref2 St 2 GOI St 2 Ref2 Sample 2 GOI St 3 Ref3 Sample 2 Ref2 St 3 Ref2 St 4 GOI St 4 GOI Sample 2

Technical triplicates for each PCR reaction

RT	plates	results
----	--------	---------

 00.04	DI	ATE A	DD	 	ELC.	ENIC

1	2	3	4	5	6	7	8	9	10	11	12
cDN	IA pool 1:	:20	cDN/	A pool 1	:20	cDN	A pool	1:20	cDł	VA pool	1:20
cDN	IA pool 1:	:40	cDN/	A pool 1	:40	cDN	A pool	1:40	cDt	VA pool	1:40
cDN	IA pool 1:	:80	cDN	A pool 1	:80	cDN	A pool	1:80	cD1	NA pool	1:80
cDN/	A pool 1:	160	cDNA	ool 1:	160	cDN/	A pool	1:160	cDN	IA pool 1	:160
cDN/	A pool 1:	320	cDNA	A pool 1:	320	cDN/	A pool	1:320	cDN	IA pool 1	:320
cDN	IA pool 1:	:20	cDNA	ool 1:	160	cDN	A pool	1:20	cDN	IA pool 1	:160
cDN	IA pool 1:	:40	cDNA	A pool 1:	320	cDN	A pool	1:40	cDN	IA pool 1	:320
cDN	IA pool 1:	:80	RNA poo	ol contro	I (NTC)	cDN	A pool	1:80	RNA po	ol contr	ol (NTC)

srt1 flank	srt1-3 Fw (acccommeanstream and a processing of the second and the
srt1 outsidehp	qPCR srt1 before hp (rattorattannaatataanaat) / srt1-3 Re (attachaanaatatatataanaa
srt2 flank	qPCR srt2 flanking Fw (SAMAGNATECHAMATTERATEGAC) / qPCR srt2 flanking Re(SCTECTCOATECHACTERATECTC)
srt2 outside hp	qPCR srt2 after hairpin (каканакасттваситакас)/ srt2-2 Re (тоттаакаксискососоник)
PP2A	
HEL	
	-

Α	В	С	D	E	F	G	н	
reaction mixes	x1	x18		program				
2x master mix	10	180		95C	7'			

-0

18

72

5

4

5 uM primer mix

template

MQ

95C	7'		
95C	10"		
60C	30*	aquisition	40 cycles
95C			
60C-95C	0.5C step	aquisition f	for melt curve

	cDNA	MQ		total RNA	MQ
cDNA pool 1:20	4 ul from 5 samples	380 ul	RNA pool	3 ul from 5 samples	135 ul
cDNA pool 1:40	200 ul of 1:20	200 ul			
cDNA pool 1:80	200 ul of 1:40	200 ul		100 uM stock (100pmol/ul)	MQ
cDNA pool 1:160	200 ul of 1:80	200 ul	5 uM primer mix	5 ul of Fw+ 5 ul of Re	90 ul
cDNA pool 1:320	200 ul of 1:160	200 ul			

tion mixes	x1	x18	x18 (srt2 outside hp)	program					
master mix	10	180	180	95C	7'				
primer mix	1	18	36	95C	10"				
template	5			60C	30"	40 cycles aquisition		cDNA	MQ
MQ	4	72	54	95C			cDNA 1:30	4 ul	116
				60C-95C	0.5C step	aquisition for melt curve			

2014.09.24 PLATE 1 PRIMER EFFICIENCY

Homework

1. Please make your own Excel file for the Absolute and Relative gPCRs

2.Please make an Excel file for the experiment where you have:
•samples from 4 different conditions (control and 3 treatments)
•3 biological replicates for each condition
•one genes of interest
•2 reference genes